Warhead penetration in concrete protective structures

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The analysis of penetration of warheads in concrete protective structures is an important part of the study of weapon effects on protective structures. This type of analysis requires that the design load in the form of a warhead is determined, and its characteristic and performance within a protective structure is known. Constitutive equations for concrete subjected to weapon effects have been a major area of interest for a long time, and several material models for concrete behaviour are developed. However, it is not until recent years that it has been possible to use finite element (FE) analyses to simulate the behaviour of concrete targets during projectile penetration with acceptable results. The reason for this is a combination of several factors, e.g. development of suitable material models for concrete, enhancement of numerical methodology and affordable high capacity computer systems. Furthermore, warhead penetration has primary been of interest for the armed forces and military industry, with a large part of the conducted research being classified during considerable time. The theoretical bases for concrete material behaviour and modelling with respect to FE analyses of projectile penetration are treated in the thesis.The development of weapons and fortifications are briefly discussed in the thesis. Warheads may be delivered onto a protective structure by several means, e.g. artillery, missiles or aerial bombing, and two typical warhead types were used within the study. These warhead types were artillery shells and unitary penetration bombs for the use against hardened targets, with penetration data for the later warhead type almost non-existing in the literature. The penetration of warheads in concrete protective structures was therefore studied through a combination of experimental work, empirical penetration modelling and FE analyses to enhance the understanding of the penetration phenomenon. The experimental data was used for evaluation of empirical equations for concrete penetration and FE analyses of concrete penetration, and the use of these methods to predict warhead penetration in protective structures are discussed within the thesis.The use of high performance concrete increased the penetration resistance of concrete targets, and the formation of front and back face craters were prevented with the use of heavily reinforced normal strength concrete (NSC) for the targets. In addition, the penetration depths were reduced in the heavily reinforced NSC. The evaluated existing empirical penetration models did not predict the behaviour of the model scaled hardened buried target penetrators in concrete structures with acceptable accuracy. One of the empirical penetration models was modified to better describe the performance of these penetrators in concrete protective structures. The FE analyses of NSC gave reasonable results for all simulation cases, with the best results obtained for normal impact conditions of the penetrators.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.