Fundamentals of High Power Impulse Magnetron Sputtering

University dissertation from Institutionen för fysik, kemi och biologi

Abstract: In plasma assisted thin film growth, control over the energy and direction of the incoming species is desired. If the growth species are ionized this can be achieved by the use of a substrate bias or a magnetic field. Ions may be accelerated by an applied potential, whereas neutral particles may not. Thin films grown by ionized physical vapor deposition (I-PVD) have lately shown promising results regarding film structure and adhesion. High power impulse magnetron sputtering (HIPIMS) is a relatively newly developed technique, which relies on the creation of a dense plasma in front of the sputtering target to produce a large fraction of ions of the sputtered material. In HIPIMS, high power pulses with a length of ~100 μs are applied to a conventional planar magnetron. The highly energetic nature of the discharge, which involves power densities of several kW/cm2, creates a dense plasma in front of the target, which allows for a large fraction of the sputtered material to be ionized.The work presented in this thesis involves plasma analysis using electrostatic probes, optical emission spectroscopy (OES), magnetic probes, energy resolved mass spectrometry, and other fundamental observation techniques. These techniques used together are powerful plasma analysis tools, and used together give a good overview of the plasma properties is achieved.from the erosion zone of the magnetron. The peak plasma density during the active cycle of the discharge exceeds 1019 electrons/m3. The expanding plasma is reflected by the chamber wall back into the center part of the chamber, resulting in a second density peak several hundreds of μs after the pulse is turned off.Optical emission spectroscopy (OES) measurements of the plasma indicate that the degree of ionization of sputtered Ti is very high, over 90 % in the peak of the pulse. Even at relatively low applied target power (~200 W/cm2 peak power) the recorded spectrum is totally dominated by radiation from ions. The recorded HIPIMS spectra were compared to a spectrum taken from a DC magnetron discharge, showing a completely different appearance.Magnetic field measurements performed with a coil type probe show significant deformation in the magnetic field of the magnetrons during the pulse. Spatially resolved measurements show evidence of a dense azimuthally E×B drifting current. Circulating currents mainly flow within 2 away cm from the target surface in an early part of the pulse, to later diffuse axially into the chamber and decrease in intensity. We record peak current densities of the E×B drift to be of the order of 105 A/m2.A mass spectrometry (MS) study of the plasma reveals that the HIPIMS discharge contains a larger fraction of highly energetic ions as compared to the continuous DC discharge. Especially ions of the target material are more energetic. Time resolved studies show broad distributions of ion energies in the early stage of the discharge, which quickly narrows down after pulse switch-off. Ti ions with energies up to 100 eV are detected. The time average plasma contains mainly low energy Ar ions, but during the active phase of the discharge, the plasma is highly metallic. Shortly after pulse switch-on, the peak value of the Ti1+/Ar1+ ratio is over 2. The HIPIMS discharge also contains a significant amount of doubly charged ions.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.