Multidisciplinary Design Optimization of Automotive Structures

University dissertation from Linköping : Linköping University Electronic Press

Abstract: Multidisciplinary design optimization (MDO) can be used as an effective tool to improve the design of automotive structures. Large-scale MDO problems typically involve several groups who must work concurrently and autonomously for reasons of efficiency. When performing MDO, a large number of designs need to be rated. Detailed simulation models used to assess automotive design proposals are often computationally expensive to evaluate. A useful MDO process must distribute work to the groups involved and be computationally efficient.In this thesis, MDO methods are assessed in relation to the characteristics of automotive structural applications. Single-level optimization methods have a single optimizer, while multi-level optimization methods have a distributed optimization process. Collaborative optimization and analytical target cascading are possible choices of multi-level optimization methods for automotive structures. They distribute the design process, but are complex. One approach to handle the computationally demanding simulation models involves metamodel-based design optimization (MBDO), where metamodels are used as approximations of the detailed models during optimization studies. Metamodels can be created by individual groups prior to the optimization process, and therefore also offer a way of distributing work. A single-level optimization method in combination with metamodels is concluded to be the most straightforward way of implementing MDO into the development of automotive structures.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.