Properties of baryons in the chiral quark model

University dissertation from Stockholm : KTH

Abstract: In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons.In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is xperimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately.In Paper 2, the chiral quark model is used to calculate the decuplet baryon magnetic moments. The values for the magnetic moments of the ++and− are in good agreement with the experimental results. The total quark spin polarizations are also calculated and are found to be significantly smaller than the non-relativistic quark model results.In Paper 3, the weak form factors for semileptonic octet baryon decays are studied in the chiral quark model. The “weak magnetism” form factors are found to be consistent with the conserved vector current (CVC) results and the induced pseudotensor form factors, which seem to be model independent, are small. The results obtained are in general agreement with experiments and are also compared with other model calculations.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.