Biolubricants and Biolubrication

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The main objective of this thesis work was to gain understanding of the principles of biolubrication, focusing on synergistic effects between biolubricants. To this end surface force and friction measurements were carried out by means of Atomic Force Microscopy, using hydrophilic and hydrophobic model surfaces in salt solutions of high ionic strength (? 150 mM) in presence of different biolubricants. There was also a need to gain information on the adsorbed layers formed by the biolubricants. This was achieved by using a range of methods such as Atomic Force Microscopy PeakForce imaging, Quartz Crystal Microbalance with Dissipation, Dynamic Light Scattering and X-Ray Reflectometry. By combining data from these techniques, detailed information about the adsorbed layers could be obtained.The biolubricants that were chosen for investigation were a phospholipid, hyaluronan, lubricin, and cartilage oligomeric matrix protein (COMP) that all exist in the synovial joint area. First the lubrication ability of these components alone was investigated, and then focus was turned to two pairs that are known or assumed to associate in the synovial area. Of the biolubricants that were investigated, it was only the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) that was found to be an efficient lubricant on its own. Deposited DPPC bilayers on silica surfaces were found to be able to provide very low friction coefficients (? 0.01) up to high pressures, ? 50 MPa. A higher load bearing capacity was found for DPPC in the liquid crystalline state compared to in the gel state.The first synergy pair that was explored was DPPC and hyaluronan, that is known to associate on the cartilage surface, and we also noticed association between hyaluronan and DPPC vesicles as well as with adsorbed DPPC bilayers. By combining these two components a lubrication performance similar to that of DPPC alone could be achieved, even though the friction coefficient in presence of hyaluronan was found to be slightly higher. The synergy here is thus not in form of an increased performance, but rather that the presence of hyaluronan allows a large amount of the phospholipid lubricant to accumulate where it is needed, i.e. on the sliding surfaces.The other synergy pair was lubricin and COMP that recently has been shown to be co-localized on the cartilage surface, and thus suggested to associate with each other. Lubricin, as a single component, provided poor lubrication of PMMA surfaces, which we utilized as model hydrophobic surfaces. However, if COMP first was allowed to coat the surface, and then lubricin was added a low friction coefficient (? 0.03) was found. In this case the synergy arises from COMP facilitating strong anchoring of lubricin to the surface in conformations that provide good lubrication performance.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)