Functional nanocomposites for advanced fuel cell technology and polygeneration

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: In recent decades, the use of fossil fuels has increased exponentially with a corresponding sharp increase in the pollution of the environment. The need for clean and sustainable technologies for the generation of power with reduced or zero environment impact has become critical. A number of attempts have been made to address this problem; one of the most promising attempts is polygeneration. Polygeneration technology is highly efficient and produces lower emissions than conventional methods of power generation because of the simultaneous generation of useable heat and electrical power from a single source of fuel. The overall efficiency of such systems can be as high as 90%, compared to 30-35% for conventional single-product power plants.A number of different technologies are available for polygeneration, such as micro gas turbines, sterling engines, solar systems, and fuel cells. Of these, fuel cell systems offer the most promising technology for polygeneration because of their ability to produce electricity and heat at a high efficiency (about 80%) with either low or zero emissions. Various fuel-cell technologies can be used in polygeneration systems. Of these, solid oxide fuel cells (SOFCs) are the most suitable because they offer high system efficiency for the production of electricity and heat (about 90%) coupled with low or zero emissions. Compared to other types of fuel cells, SOFCs have fuel flexibility (direct operation on hydrocarbon fuels, such as biogas, bio-ethanol, bio-methanol, etc.) and produce high-quality heat energy. The development of polygeneration systems using SOFCs has generally followed one of two approaches. The first approach involves the design of a SOFC system that operates at a temperature of 850 oC and uses natural gas as a fuel. The second approach uses low-temperature (generally 400-600 oC) SOFC (LTSOFC) systems with biomass, e.g., syngas or liquid fuels, such as bio-methanol and bio-ethanol. The latter systems have strong potential for use in polygeneration.High-temperature SOFCs have obvious disadvantages, and challenges remain for lowering the cost to meet commercial interest. The SOFC systems need lower operating temperatures to reduce their overall costs.This thesis focuses on the development of nanocomposites for advanced fuel-cell technology (NANOCOFC), i.e., the next generation SOFCs, which are low-temperature (400-600 oC), marketable, and affordable SOFCs. In addition, new concepts that pertain to fuel-cell science and technology—NANOCOFC (www.nanocofc.com)—are explored and developed. The content of this thesis is divided into five parts:In the first part of this thesis (Papers 1-5), the two-phase nanocomposite electrolytes, viz. ceria-salt and ceria-oxide, were prepared and studied using different electrochemical techniques. The microstructure and morphology of the composite electrolytes were characterised using XRD, SEM and TEM, and the thermal analysis was conducted using DSC. An ionic conductivity of 0.1 S/cm was obtained at 300 ºC, which is comparable to that of conventional YSZ operating at 1000 ºC. The maximum output power density was 1000 mW/cm2 at 550 oC. A co-doped ceria-carbonate was also developed to improve the ionic conductivity, morphology, and performance of the electrolyte.In the second part of this thesis (Papers 7-9), composite electrodes that contained less or no nickel (Ni) were developed for a low-temperature SOFC. All of the elements were highly homogenously distributed in the composite electrode, which resulted in high catalytic activity and good ASOFC performance. The substitution of Ni by Zn in these electrodes could reduce their cost by a factor of approximately 25.In the third part of this thesis (Papers 10), an advanced multi-fuelled solid-oxide fuel cell (ASOFC) with functional nanocomposites (electrolytes and electrodes) was developed. Several different types of fuel, such as gaseous (hydrogen and biogas) and liquid fuels (bio-ethanol and bio-methanol), were tested. Maximum power densities of 1000, 300, 600, and 550 mW/cm2 were achieved with hydrogen, bio-gas, bio-methanol, and bio-ethanol, respectively, in the ASOFC. Electrical and total efficiencies of 54% and 80%, respectively, were achieved when the single cell was used with hydrogen.The fourth part of this thesis (Papers 11) concerns the design of a 5 kW ASOFC system based on the demonstrated advanced SOFC technology. A polygeneration system based on a low-temperature planar SOFC was then designed and simulated. The efficiency of the overall system was approximately 80%.The fifth part of this thesis (Paper 12) describes a single-layer multi-fuelled electrolyte-free fuel cell that is a revolutionary innovation in renewable-energy sources. Conventional fuel cells generate electricity by ion transport through the electrolyte. However, this new device works without an electrolyte, and all of the processes occur at particle surfaces in the material. Based on a theoretical calculation, an additional 18% enhancement of the fuel cell’s efficiency will be achieved using this new technology compared to the conventional technologies.Our developed ASOFC systems with functional nanocomposites offer significant advantages in reducing the operational and capital costs for the production of power and heat by using different fuels based on the fuel-cell technology. ASOFC systems can be used for polygeneration with renewable fuels (i.e., biomass fuels) at high efficiency as a sustainable solution to energy generation in our society. The results have been achieved for this thesis work has demonstrated an advanced fuel cell technology.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.