Single Phase Convective Heat Transfer with Nanofluids : An Experimental Approach

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Nanofluids (NFs) are engineered colloids of nanoparticles (NPs) dispersed homogenously within base fluids (BFs). Due to the presence of NPs, the thermophysical and transport properties of BFs are subject to change. Existing technologies for cooling electronics seem to be insufficient and NFs, as reported in several studies, might offer a better alternative to liquid cooling. The main purpose of this study, by choosing a critical approach to existing knowledge in the literature, is to investigate experimentally the potential for replacing BFs with NFs in single–phase flow. Several NFs (mainly water based metal oxide NFs) were synthesised, and different experiments (including thermal conductivity, viscosity, heat transfer coefficient, and shelf stability) were performed.The thermal conductivity and the viscosity of several NFs were measured at both near room and elevated temperatures; the results are reported and compared with some correlations. It is shown that the Maxwell model for thermal conductivity and the modified Krieger–Dougherty model for viscosity can be used to predict these properties of NFs within ±10% error, even at elevated temperatures.A screening setup, including a test section with d = 0.5 mm and L = 30 cm, was designed for measuring the heat transfer performance of NFs in laminar flow. In addition a closed–loop setup with a 3.7 mm inner diameter and 1.5 m length test section was also designed to measure the heat transfer coefficients in both laminar and turbulent flow with higher accuracy. Based on the results, classical correlations for predicting Nusselt number and friction factor in a straight tube are still valid for NFs within ± (10 – 20)% error provided that the correct thermophysical properties are used for NFs.Different methods of comparing cooling performance of NFs to BFs are then investigated. Comparison at equal Reynolds number, the most popular method in the literature, is demonstrated both experimentally and analytically to be misleading. However, if the most correct criterion (at equal pumping power) is chosen, a small advantage for some NFs over their BFs should be expected only under laminar flow. The investigation concludes with the proposition of a unique method and apparatus to estimate the shelf stability of NFs.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.