Proximity Ligation Assay for High Performance Protein Analysis in Medicine

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: High quality reagents are preconditions for high performance protein analyses. But despite progress in some techniques, e.g. mass spectrometry, there is still a lack of affinity-based detection techniques with enhanced precision, specificity, and sensitivity. Building on the concept of multiple affinity recognition reactions and signal amplification, a proximity ligation assay (PLA) was developed as a molecular tool for analyzing proteins and their post-translational modification and interactions. PLA enhanced the analysis of protein expression levels and post-translational modifications in western blotting (Paper I), which had elevated sensitivity and specificity, and an ability to investigate protein phosphorylation.A general and straightforward method was established for the functionalization of affinity reagents through adding DNA strands to protein domains for protein analysis in medicine (Paper II). A method for protein domain-mediated conjugation was developed to simplify the use of recombinant affinity reagents, such as designed ankyrin repeat protein (DARPin), in DNA-mediated protein analyses.Alzheimer’s disease (AD) is characterized by progressive cognitive decline and memory impairment, and amyloid-beta plaques and neurofibrillary tangles (NFT) in the brain are clinical hallmarks of the disease. In order to understand the mechanisms underlying the formation of NFT, in situ PLA was used to explore the role of microtubule affinity related kinase 2 (MARK2) in phosphorylating tau protein during the pathological progress of AD (Paper III). The analyses of roles of MARK proteins 1-4 in phosphorylating tau protein in cells and in post-mortem human brains were performed in Paper IV.The focus of this thesis was the study of post-translational modifications and interactions of proteins in medicine. Procedures for high performance protein analysis in western blotting via proximity ligation were developed, and a functionalization method for recombinant affinity reagents in DNA-mediated protein analysis was established. These and other techniques were used to investigate the roles of tau-phosphorylating MARK family proteins in AD.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)