Cluster in situ studies of the auroral acceleration region

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: This thesis addresses a central topic in auroral physics, namely particle accelerationproducing intense aurora as well as energetic plasma outflow. Cluster satellitemeasurements of electric and magnetic fields, electrons and ions, collected across auroralfield lines, are used to study various aspects of the quasi-static auroral accelerationregion (AAR), its relation to the auroral density cavity, and the relative role of quasistaticand Alfvénic acceleration for producing aurora.The acceleration potential structures and electro-dynamical features of a large-scaleauroral surge is studied based on data from the Cluster satellites, crossing differentmagnetic local time (MLT) sectors of a surge-horn system. This allows snapshots of theacceleration potential structure and of the current systems to be provided, including thefield-aligned current closure for the different segments of the surge-horn aurora.The relative role of quasi-static and Alfvénic acceleration for producing auroral arcs isaddressed for the case of a large-scale substorm surge, crossed by the Cluster C2 satellite. Thetwo contributions to the downward electron energy flux is estimated for each of the smallerscalearc structures crossed by C2 within and adjacent to the large-scale surge. For these, thequasi-static acceleration typically dominates, except for the polar cap boundary arc, and in thesurge head, where the Alfvénic contribution is significant.The occurrence of intense electric fields and associated plasma densities versus altitude andMLT is the subject of a statistical study based on 9.5 years of Cluster data, collected ataltitudes between 2 and 4 RE. Intense arc-associated electric fields occur in two altituderegions, separated by a gap around 2.8 RE. The low-altitude fields are interpreted as mainlyquasi-static and the high-altitude fields as mainly Alfvénic. The results which are supportedby estimates of the (?E/?B)/VA ratio, indicate that, on the average, the quasi-static fieldsextend up to 2.6 RE, above which a transition to Alfvénic fields occur.The auroral density cavity, intimately associated with the auroral acceleration process, wasthe subject of a statistical study based on Cluster data, collected between 2002 and 2007, ataltitudes between 2.0 RE and 5.5 RE. Decreasing electron densities are observed between 2 and 3.3 RE, and between 4.6 and 5.5 RE, corresponding to climbing the parallel potential hillof the AAR. Furthermore, the density is found to decrease while ascending above the AAR,indicating that the cavities are not necessarily confined by it.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)