Multilayered Coreless Printed Circuit Board (PCB) Step-down Transformers for High Frequency Switch Mode Power Supplies (SMPS)

University dissertation from Sundsvall, Sweden : Mid Sweden University

Abstract: The Power Supply Unit (PSU) plays a vital role in almost all electronic equipment. The continuous efforts applied to the improvement of semiconductor devices such as MOSFETS, diodes, controllers and MOSFET drivers have led to the increased switching speeds of power supplies. By increasing the switching frequency of the converter, the size of passive elements such as inductors, transformers and capacitors can be reduced. Hence, the high frequency transformer has become the backbone in isolated AC/DC and DC/DC converters. The main features of transformers are to provide isolation for safety purpose, multiple outputs such as in telecom applications, to build step down/step up converters and so on. The core based transformers, when operated at higher frequencies, do have limitations such as core losses which are proportional to the operating frequency. Even though the core materials are available in a few MHz frequency regions, because of the copper losses in the windings of the transformers those which are commercially available were limited from a few hundred kHz to 1MHz. The skin and proximity effects because of induced eddy currents act as major drawbacks while operating these transformers at higher frequencies. Therefore, it is necessary to mitigate these core losses, skin and proximity effects while operating the transformers at very high frequencies. This can be achieved by eliminating the magnetic cores of transformers and by introducing a proper winding structure.A new multi-layered coreless printed circuit board (PCB) step down transformer for power transfer applications has been designed and this maintains the advantages offered by existing core based transformers such as, high voltage gain, high coupling coefficient, sufficient input impedance and high energy efficiency with the assistance of a resonant technique. In addition, different winding structures have been studied and analysed for higher step down ratios in order to reduce copper losses in the windings and to achieve a higher coupling coefficient. The advantage of increasing the layer for the given power transfer application in terms of the coupling coefficient, resistance and energy efficiency has been reported. The maximum energy efficiency of the designed three layered transformers was found to be within the range of 90%-97% for power transfer applications operated in a few MHz frequency regions. The designed multi-layered coreless PCB transformers for given power applications of 8, 15 and 30W show that the volume reduction of approximately 40-90% is possible when compared to its existing core based counterparts. The estimation of EMI emissions from the designed transformers proves that the amount of radiated EMI from a three layered transformer is less than that of the two layered transformer because of the decreased radius for the same amount of inductance.Multi-layered coreless PCB gate drive transformers were designed for signal transfer applications and have successfully driven the double ended topologies such as the half bridge, the two switch flyback converter and resonant converters with low gate drive power consumption of about half a watt. The performance characteristics of these transformers have also been evaluated using the high frequency magnetic material made up of NiZn and operated in the 2-4MHz frequency region.These multi-layered coreless PCB power and signal transformers together with the latest semiconductor switching devices such as SiC and GaN MOSFETs and the SiC schottky diode are an excellent choice for the next generation compact SMPS.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)