Biomaterials and Hemocompatibility

University dissertation from Kalmar, Växjö : Linnaeus University Press

Abstract: Biomaterials are commonly used in the medical clinic today; however, artificial materials can activate the cascade systems in the blood (complement-, coagulation-, contact- and fibrinolytic systems) as well as the platelets to various degrees. When an artificial surface comes in contact with blood, plasma proteins will be adsorbed to the surface within seconds. The composition of the layer of proteins differs between materials and is crucial for the hemocompatibility of the material.This thesis includes five projects.In Paper I the anticoagulants heparin and the thrombin inhibitor hirudin were evaluated in a whole blood model. Hirudin was found to be superior to low dose heparin since it did not affect the activation of the complement system nor the leukocytes. The most interesting observation was that expression of TF was seen on surface-attached monocytes in hirudin- treated blood but not heparin blood.In Paper II peptides from the streptococcal M-protein, which has affinity for the human complement inhibitor C4BP, were attached to a polymeric surface. When being exposed to blood the endogenous complement regulator was enriched at the surface of the material, via the M-peptides. With this new approach we created a self-regulatory surface, showing significant lowered material-induced complement activation.In Paper III apyrase, an enzyme which hydrolyzes nucleoside ATP and ADP, was immobilized on a polymer surface. Lower platelet activation and platelet-induced coagulation activation was seen for the apyrase-coated surface compared to control surfaces after exposure to whole human blood, due to the enzymes capability to degrade ADP released from activated platelets.In Paper IV and V we synthesized an array of polymeric materials which were characterized regarding physical-chemical properties, adsorption of plasma proteins, and hemocompatibility. The polymers showed widely heterogeneous protein adsorption. Furthermore, when the polymers were exposed to whole blood, two of the materials showed superior hemocompatibility (monitored as complement- and coagulation activation), compared to the reference poly(vinyl chloride).

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.