Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles

University dissertation from Institutionen för datavetenskap

Abstract: Technology has reached a point where it has become feasible to develop unmanned aerial vehicles (UAVs), that is aircraft without a human pilot on board. Given that future UAVs can be autonomous and cheap, applications of swarming UAVs are possible. In this thesis we have studied a reconnaissance application using swarming UAVs and how these UAVs can communicate the reconnaissance data. To guide the UAVs in their reconnaissance mission we have proposed a pheromone based mobility model that in a distributed manner guides the UAVs to areas not recently visited. Each UAV has a local pheromone map that it updates based on its reconnaissance scans. The information in the local map is regularly shared with a UAV’s neighbors. Evaluations have shown that the pheromone logic is very good at guiding the UAVs in their cooperative reconnaissance mission in a distributed manner.Analyzing the connectivity of the UAVs we found that they were heavily partitioned which meant that contemporaneous communication paths generally were not possible to establish. This means that traditional mobile ad hoc network (MANET) routing protocols like AODV, DSR and GPSR will generally fail. By using node mobility and the store-carry-forward principle of delay-tolerant routing the transfer of messages between nodes is still possible. In this thesis we propose location aware routing for delay-tolerant networks (LAROD). LAROD is a beacon-less geographical routing protocol for intermittently connected mobile ad hoc networks. Using static destinations we have shown by a comparative study that LAROD has almost as good delivery rate as an epidemic routing scheme, but at a substantially lower overhead.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.