Lifestyle and Genome Evolution in Vector-Borne Bacteria A Comparison of Three Bartonella Species

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Bacterial genomes provide records of the molecular processes associated with emergence and evolution of different bacterial lifestyles. This thesis is based on whole-genome comparisons within the genus Bartonella, an excellent model system for studies of host- and vector-specificity and infection outcome in animal-associated bacteria. The louse-borne human specialist and trench fever agent Bartonella quintana was contrasted to the flea-borne generalist relatives Bartonella henselae and Bartonella grahamii, which cause asymptomatic infection in cat and mouse respectively. While B. henselae is commonly isolated from humans, and causes cat scratch disease, there is only one reported case of B. grahamii human infection.The gene complements of the three species are nested like Russian dolls with the smaller genome (B. quintana) being entirely contained in the medium sized (B. henselae), which in turned is contained in the largest (B. grahamii). Size differences reflect differences in the horizontally and vertically acquired gene content, and in the number of genus- and species- specific genes, owing to differential impact of bacteriophages and plasmids, and to different degrees of genome decay. These processes can be attributed to the three distinct lifestyles.Comparisons with other alpha-proteobacteria suggest that the Bartonella genus as a whole evolved from plant-associated species, and that horizontal transfer, in particular of genes involved in interaction with the host, played a key role in the transition to animal intracellular lifestyle. The long-term genome decay associated with this lifestyle is most advanced in the host-restricted B. quintana. The broad host-range species B. grahamii has the largest genome and the largest proportion of auxiliary DNA of the three, probably because it has access to a larger gene pool. In encodes all the known pathogenicity determinants found in the genomes of B. henselae and B. quintana, suggesting that these genes primarily evolved to facilitate colonization in the reservoir host.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)