Microfluidics in Surface Modified PDMS Towards Miniaturized Diagnostic Tools

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: There is a strong trend in fabricating miniaturized total analytical systems, µTAS, for various biochemical and cell biology applications. These miniaturized systems could e.g. gain better separation performances, be faster, consume less expensive reagents and be used for studies that are difficult to access in the macro world. Disposable µTAS eliminate the risk of carry-over and can be fabricated to a low cost.This work focused on the development of µTAS modules with the intentional use for miniaturized diagnostics. Modules for blood separation, desalting, enrichment, separation and ESI-MS detection were successfully fabricated. Surface coatings were additionally developed and evaluated for applications in µTAS with complex biological samples. The first heparin coating could be easily immobilized in a one-step-process, whereas the second heparin coating was aimed to form a hydrophilic surface that was able to draw blood or plasma samples into a microfluidic system by capillary forces. The last mentioned heparin surface was further utilized when developing a chip-based sensor for performing CD4-count in human blood, an important marker to determine the stage of an HIV-infection.All devices in this work were fabricated in PDMS, an elastomeric polymer with the advantage of rapid and less expensive prototyping of the microfabricated master. It was shown that PDMS could be considered as the material of choice for future commercial µTAS. The devices were intentionally produced using a low grade of fabrication complexity. It was however demonstrated that even with low complexity, it is possible to integrate several functional chip modules into a single microfluidic device.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)