Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The development of materials for advanced applications requires innovative macromolecules with well-defined structures and the inherent ability to be tailored in a straightforward manner. Dendrimers, being a subgroup of the dendritic polymer family, possess properties which fulfill such demands. They have a highly branched architecture with a high number of functional groups and are one of the most well-defined types of macromolecules ever synthesized. However, despite their well-defined nature and high functional density, traditional dendrimers commonly lack diverse chemical functionalities. Therefore, this thesis focuses on the synthesis of more complex dendritic materials to extend their tailoring capacity by introduction of dualfunctionalities for multipurpose actions. It covers the synthesis of dualfunctional dendrimers, dendritic modification of linear poly(ethylene glycol) polymers and cellulose surfaces, and the synthesis of linear dendritic hybrids. The building blocks enabling this synthesis, AB2C monomers, were also developed during this work. The orthogonal nature between click groups (azide, alkyne and alkene) and hydroxyl groups have efficiently been utilized for postfunctionalization by robust click chemistry and traditional esterification reactions. Furthermore, linear dendritic hybrids were synthesized, merging the properties of linear and dendritic macromolecules. The dendritic frameworks were tailored towards the production of bone fracture adhesives, novel biofunctional dendritic hydrogels, biosensors and micellar drug delivery vehicles.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)