Towards TCP/IP for Wireless Sensor Networks

Abstract: Wireless sensor networks are composed of large numbers-up to thousands-of tiny radio-equipped sensors. Every sensor has a small microprocessor with enough power to allow the sensors to autonomously form networks through which sensor information is gathered. Wireless sensor networks makes it possible to monitor places like nuclear disaster areas or volcano craters without requiring humans to be immediately present. Many wireless sensor network applications cannot be performed in isolation; the sensor network must somehow be connected to monitoring and controlling entities. This thesis investigates a novel approach for connecting sensor networks to existing networks: by using the TCP/IP protocol suite in the sensor network, the sensors can be directly connected to an outside network without the need for special proxy servers or protocol converters. Bringing TCP/IP to wireless sensor networks is a challenging task, however. First, because of their limited physical size and low cost, sensors are severely constrained in terms of memory and processing power. Traditionally, these constraints have been considered too limiting for a sensor to be able to use the TCP/IP protocols. In this thesis, I show that even tiny sensors can communicate using TCP/IP. Second, the harsh communication conditions make TCP/IP perform poorly in terms of both throughput and energy efficiency. With this thesis, I suggest a number of optimizations that are intended to increase the performance of TCP/IP for sensor networks. The results of the work presented in this thesis has had a significant impact on the embedded TCP/IP networking community. The software developed as part of the thesis has become widely known in the community. The software is mentioned in books on embedded systems and networking, is used in academic courses on embedded systems, is the focus of articles in professional magazines, is incorporated in embedded operating systems, and is used in a large number of embedded devices.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)