On-line time domain reflectometry diagnostics of medium voltage XLPE power cables

University dissertation from Stockholm : KTH

Author: Valentinas Dubickas; Kth.; [2006]

Keywords: TEKNIKVETENSKAP; TECHNOLOGY;

Abstract: Degradation of XLPE insulated power cables by water-trees is a primary cause of failure of these cables. The detection of water-trees and information about the severity of the degradation can be obtained with off-line measurement using dielectric spectroscopy. In many situations only a limited part of the cable may be degraded by the water-trees. In such a situation a method for localization of this water-treed section would be desirable. On-voltage Time Domain Reflectometry (TDR) diagnostics proved to be capable of localizing the water-tree degraded sections of the cable. The possibility of using on-voltage TDR as a diagnostic method opens up as a further step for the development of an on-line TDR method where the diagnostics are performed using pre-mounted sensors on the operating power cable. The benefits with such a method are: ability to perform diagnostics without disconnecting the cable from a power grid; the diagnostics performed during a longer period of time could give an extra information; no need for an external high-voltage supply unit.In this thesis the sensors for the on-line TDR are investigated in terms of sensitivity and bandwidth. High frequency models were built and the simulation results in frequency and time domains were verified by measurements. Results of the on-voltage TDR measurements on the degraded XLPE cables in laboratory as well as on-site are presented.The on-line TDR system and the results of a four-days on-line measurement sequence are presented. Variations due to load cycling of the cable were observed, where an increase in the cable temperature cause an increase of the pulse propagation velocity in the cable.A method has been developed for high frequency characterization of power cables with twisted screen wires, where the measurements are performed using inductive strip sensors. This technique allows the high frequency parameters of the selected section of the cable to be extracted. The high frequency parameters are extracted from frequency domain measurements of S-parameters as well as from TDR measurements.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.