Adenoviral Control of RNAi/miRNA Pathways in Human Cells

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: RNA interference (RNAi) is a diverse, conserved regulatory mechanism in eukaryotic cells, which silences the target gene expression in a homology-dependent manner. Although it has been well documented that RNAi is an antiviral mechanism in plants and insects, it is still unclear whether RNAi naturally limits viral infections in vertebrates. Viruses are masters of adopting strategies to subvert cellular defense mechanisms. Not only can viruses use elaborate strategies to suppress the effects of defensive RNAi, but they can also redirect or interfere with cellular functions orchestrated by endogenous small RNAs.In our work we have focused on studying the relationship of human adenovirus type 5 (Ad5) infection and the RNAi/miRNA pathways. We show that Ad5 infection inhibits RNAi by blocking the activity of Dicer and the RNA-induced silencing complex (RISC). For Dicer inhibition, the virus-associated RNAs, VA RNAI and VA RNAII bind Dicer through their terminal stems and are cleaved by Dicer into functional small RNAs that are incorporated into active RISC.Furthermore, by cloning small RNAs, we found that approximately 80% of Ago2-containing RISC immunopurified from late infected cells was associated with VA RNA-derived small RNAs (mivaRNAs). Interestingly, the small RNAs derived from VA RNAII, the minor VA RNA species, appear to be the major mivaRNAs occupying RISC and associate with polyribosomes, which indicates their potential roles as miRNAs regulating translation of cellular mRNAs.During our previous work, we observed that the strand bias of VA RNAI derived small RNA (mivaRI) incorporating into active RISC varied in the different viable Ad5 mutant viruses infected cells. It has been reported that Ad5 VA RNAI had two transcription initiation sites, which produced two clusters of VA RNAI with 3 nt difference at their 5’ end. Our data show that this heterogeneity resulted in a dramatic difference in mivaRI guide strand selection.Collectively, our data contributes to understanding the interplay between virus and host. This study would be beneficial in designing optimal adenovirus vectors for therapeutic RNAi application.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.