Aspects of Optical Broad Band Spectroscopy and Information Extraction - Applications in Medicine and Ecology

University dissertation from Tryckeriet i E-huset, Lunds universitet

Abstract: Popular Abstract in Swedish Optoelektronik genomgår för närvarande en otrolig utveckling, inte minst på grund av de senaste årtiondenas kommersialisering och utveckling av hemelektronik som kompaktdiskar och digitalkameror. Denna utveckling har drivit en blomstrande global tillväxt för optoelektroniska företag som varje år utvidgar sina erbjudanden av optiska komponenter i hård konkurrens. Utvecklingen innebär också att det finns en stor potential för skräddarsydda specialsystem för inspektion, kvalitetskontroll och övervakning, vilka kan ersätta manuell kvalitetsinspektion, och ge mycket mer konsistenta och kvantitativa resultat. Dessutom erbjuder optisk mätteknik lösningar som ligger utanför den mänskliga synens begränsningar. Till exempel kan man använda mikroskop, teleskop och satellitövervakning för att studera fenomen som är för små, för långt bort eller för stora för det mänskliga ögat. Det finns också fenomen som sker alltför snabbt för att vi ska kunna uppfatta dem; dock kan pulsade lasrar upplösa fenomen, som inträffar på mindre än en miljarddel av en sekund. Andra situationer kräver observationer över lång tid, och här kan outtröttlig datorstyrd övervakning registrera optiska signaler över veckor och år. Den mänskliga synen är också begränsad vad gäller antalet färger hos ljuset som vi kan se skillnad på, och mycket information om vår omgivning ligger utanför det område vi kallar synligt ljus. I motsats till de tre våglängdsband den mänskliga synen kan uppfatta är optoelektronik känslig från djupt ultraviolett ljus till termisk infraröd strålning, och spektrometrar och multispektrala bildsystem med tusentals våglängdsband kan idag köpas eller byggas av amatörer. I modern optisk mätteknik kvantifieras ljusets intensitet, våglängd, ursprung och detektionstidpunkt i siffror på datorer. Detta kan på kort tid generera enorma mängder information. För en väl tillrättalagd optisk analysmetod har ljusets ursprungliga egenskaper påverkats av provets kvalitet eller sammansättning. Detta kan till exempel avspegla den kemiska sammansättningen eller provets mikrostruktur. Informationen som erhålls kan vara mångdimensionell och svåröverskådlig för den mänskliga hjärnan. Det finns dock systematiska tillvägagångssätt för tolkning av sådana stora dataset, till exempel så kallade kemometriska metoder som bygger på linjär algebra, matrisformulering och avancerad statistik. Utvärderingen görs ofta med hjälp av datorprogram som tränas med expertsvar från t.ex. en läkare eller ekolog. Dagens datorkraft innebär att analysen utförs direkt, och tillsammans ger optisk mätteknik och datorutvärdering möjligheten att omedelbart utnjyttja data. Detta är värdefullt, t.ex. inom medicinsk diagnostik. Andra egenskaper som kännetecknar optisk mätteknik är att den är icke-invasiv, d.v.s. att den stör provet minimalt, och att diagnostiken kan upprepas om och om igen över långa tidsperioder. I denna avhandling belyses främst aspekter hos fasta eller flytande prov, som kännetecknas av att ha bredbandig spektral information. Exempel på användning finns inom medicinen där förslag på förbättrad cancerdiagnostik av vävnader ges. Detta åstadkoms typiskt med utveckling av fiberoptiska metoder i kontakt med provet. Det ges även föreslag till hur infärgningsfri malariadetektion i blodprov kan erhållas med enkla medel och ombyggnad av traditionella mikoskop. På större skala ges exempel på tillämpningar för analys av luftvolymer med avseende på insekter och fåglar. Elektrooptiska tillvägagångssätt med teleskop möjliggör kvantitativ icke-invasiv analys av insekters beteende på habitatnivå. Genom att märka individer med fluorescerande pulver kan till exempel spridning och levnadslängd uppskattas. Laser-radar eller lidar kan till skillnad från traditionell radar ge färginformation. I denna avhandling visas hur detta kan användas för klassifikation av nattmigrerande fåglar som flyger på hög höjd. Detta har stora implikationer för biologernas möjligheter att studera migrationsmönster hos enskilda arter, något som är av centralt intresse för migrationsforskning. Fåglar och insekter kan flyga långa sträckor och kan transportera parasiter, virus, frön eller pollen mellan olika kontinener. Förbättrade övervakningsmöjligheter kan föröka förståelsen av sjukdomspridning för människor och boskap. Gemensamt för optisk mätteknik inom medicin och ekologi är att det grundläggande samspelet mellan ljus och biologisk vävnad är detsamma eller liknande. En central punkt i denna avhandling är därför att beskriva olika aspekter av denna interaktion, som i sin tur ger upphov till olikheter i de optiska signalerna. En annan central aspekt i avhandlingen är realistisk instrumentering. Detta innebär att man med små medel och klokt utformad design kan åstadkomma tekniker som kan användas i verkligheten och gynna lokalsamhället genom t.ex. tillämpninger av teknikerna inom hälsa eller lantbruk. Detta är väsentligt både inom innovation och entreprenörskap, men även för att motivera vetenskaplig aktivitet och få uppbackning och stöd från befolkningen, inte minst i utvecklingsländer. Ljusdioder och teleskop för amatörastronomi är två exempel på utrustning som uttnyttas för realistik intrumentering i denna avhandling.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)