Management of chemical risk through occupational exposure limits

University dissertation from Stockholm : KTH

Abstract: Occupational Exposure Limits (OELs) are used as an important regulatory instrument to protect workers’ health from adverse effects of chemical exposures. The OELs mirror the outcome of the risk assessment and risk management performed by the standard setting actor. In paper I the OELs established by 18 different organisations or national regulatory agencies from the industrialised world were compared. The comparison concerned: (1) what chemicals have been selected and (2) the average level of exposure limits for all chemicals. In paper II the OELs established by 7 different national regulatory agencies of EU member states are compared to those of the European Commission (EC). In addition to the same comparisons as performed in the first study a comparison level was introduced (3) the similarity between the OELs of these EU member states and the OELs recommended by the EC.List of OELs were collected through the web-pages of, and e-mail communication with the standard-setting agencies. The selection of agencies was determined by availability of the lists. The database of paper I contains OELs for a total of 1341 substances; of these 25 substances have OELs from all 18 organisations while more than one third of the substances are only regulated by one organisation alone. In paper II this database was narrowed down to the European perspective.  The average level of OELs differs substantially between organisations; the US OSHA exposure limits are (on average) nearly 40 % higher than those of Poland. Also within Europe there was a nearly as large difference. The average level of lists tends to decrease over time, although there are exceptions to this. The similarity index in paper II indicates that the exposure limits of EU member states are converging towards the European Commission’s recommended OELs. These two studies also showed that OELs for the same substance can vary significantly between different standard-setters. The work presented in paper III identifies steps in the risk assessment that could account for these differences. Substances for which the level of OELs vary by a factor of 100 or more were identified and their documentation sought for further scrutiny. Differences in the identification of the critical effect could explain the different level of the OELs for half of the substances. The results reported in paper III also confirm the tendency of older OELs generally being higher. Furthermore, several OELs were more than 30 years old and were based on out-dated knowledge. But the age of the data review could not account for all the differences in data selection, only one fifth of the documents referred to all available key studies. Also the evaluation of the key studies varied significantly.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.