On Finding Spectrum Opportunities in Cognitive Radios Spectrum Sensing and Geo-locations Database

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The spectacular growth in wireless services imposes scarcity in term of the available radio spectrum. A solution to overcome this scarcity is to adopt what so called cognitive radio based on dynamic spectrum access. With dynamic spectrum access, secondary (unlicensed) users can access  spectrum owned by primary (licensed) users when it is temporally and/or geographically unused. This unused spectrum is termed as spectrum opportunity. Finding these spectrum opportunities related aspects are studied in this thesis where two approaches of finding spectrum opportunities, namely spectrum sensing and geo-locations databases are considered.In spectrum sensing arena, two topics are covered, blind spectrum sensing and sensing time and periodic sensing interval optimization. For blind spectrum sensing, a spectrum scanner based on maximum minimum eigenvalues detector and frequency domain rectangular filtering is developed. The measurements show that the proposed scanner outperforms the energy detector scanner in terms of the probability of detection. Continuing in blind spectrum sensing, a novel blind spectrum sensing technique based on discriminant analysis called spectrum discriminator has been developed in this thesis. Spectrum discriminator has been further developed to peel off multiple primary users with different transmission power from a wideband sensed spectrum. The spectrum discriminator performance is measured and compared with the maximum minimum eigenvalues detector in terms of the probability of false alarm, the probability of detection and the sensing time.For sensing time and periodic sensing interval optimization, a new approach that aims at maximizing the probability of right detection, the transmission efficiency and the captured opportunities is proposed and simulated. The proposed approach optimizes the sensing time and the periodic sensing interval iteratively. Additionally, the periodic sensing intervals for multiple channels are optimized to achieve as low sensing overhead and unexplored opportunities as possible for a multi channels system.The thesis considers radar bands and TV broadcasting bands to adopt geo-locations databases for spectrum opportunities. For radar bands, the possibility of spectrum sharing with secondary users in L, S and C bands is investigated. The simulation results show that band sharing is possible with more spectrum opportunities offered by C band than S and L band which comes as the least one. For the TV broadcasting bands, the thesis treats the power assignment for secondary users operate in Gävle area, Sweden. Furthermore, the interference that the TV transmitter would cause to the secondary users is measured in different locations in the same area.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)