Towards the Development of Photoswitchable β-Hairpin Mimetics

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Peptide secondary structure mimetics are important tools in medicinal chemistry, as they provide analogues of endogeneous peptides with new physicochemical and pharmacological properties. The β-hairpin motif has been shown to be involved in numerous physiological processes, among others in regulation of eucariotic gene transcription. This thesis addresses the design, synthesis and conformational analysis of photoswitchable β-hairpin mimetics.The developmental work included the establishment of an improved procedure for cross coupling of aryl halides with terminal alkynes. Microwave mediated Sonogashira couplings in closed vessels were optimized under homogeneous and solid-phase conditions furnishing excellent yields for a large variety of substrates within 5 – 25 minutes. In addition, microwave heating was shown not to have any non-conventional effect on the reaction rate.Furthermore, the most important factors affecting β-hairpin stability were evaluated. Studies of tetrapeptide and decapeptide analogues revealed the essential role of the β-turn in initiation of hairpin folding. Moreover, hydrogen bonding was shown to be the main interchain stabilizing force, whereas hydrophobic interactions were found to be relatively weak. Nevertheless, hydrophobic packing appears to provide an important contribution to the thermodynamic stability of β-hairpins.Photoswitchable peptidomimetics were prepared by incorporation of various stilbene moieties into tetra- and decapeptides. Synthesis, photochemical isomerisation and spectroscopic conformational analysis of the compounds were performed.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)