Through the magnifying glass - The big small world of marine meiofauna : Morphology, species and evolution in Nemertodermatida

University dissertation from Stockholm : Department of Zoology, Stockholm University

Abstract: Nemertodermatida is a group of microscopic marine worm-like animals that live as part of the marine meiofauna in sandy or muddy sediments; one species lives commensally in a holothurian. These benthic worms were thought to disperse passively with ocean currents, resulting in little speciation and thus wide or even cosmopolitan distributions. Individuals occur in low abundance and have few light microscopically available characters, which altogether may explain why only eight species had been described between the discovery of the taxon in 1930 and this thesis. We used molecular methods to address the diversity and phylogeny of this group for the first time. In a study of two nominal species with samples from all around the world, a high degree of cryptic speciation was discovered and several new species described. Diagnoses were based on molecular data complemented by morphological characters, where available. Given the patchy geographical record it can be assumed that the majority of the biodiversity of Nemertodermatida is yet to be described. A phylogenetic study including all but three known species revealed a deep divergence between the two families of Nemertodermatida but non-monophyly of the taxon was rejected by an Approximately Unbiased test.Confocal laser scanning microscopic studies of several species show that the pattern of the body-wall musculature and the nervous system are specific for different genera. The muscular system of all species consists of a basic orthogonal grid with specific diagonal musculature and specialized muscles associated with body openings. The mouth appears to be transient feature in Nemertodermatida, developing only after hatching and being reduced again in mature worms. The nervous system is highly variable with very different ground patterns between the genera, such as an epidermal net, a centralized neuropile or a commissural brain.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)