Molecular and Biological Characteristics of Stroma and Tumor Cells in Colorectal Cancer

University dissertation from Linköping University Electronic Press

Abstract: Carcinogenesis is a progressive process involving multiple genetic alterations in tumor cells and complex interactions in the tumor-host microenvironment. To better understand the contribution of molecular alterations in tumor cells and stromal variables to the development of colorectal cancer (CRC) and identify prognostic factors, in this study we examined the clinicopathological and biological significance of stromal variables, including particularly interesting new cysteine-histidine rich protein (PINCH), inflammatory infiltration, angiogenesis and lymphangiogenesis, as well as hRAD50/hMRE11/hNBS1 proteins and hRAD50 mutation in tumor cell in CRC.PINCH protein expression in the stroma was increased from normal mucosa to primary tumors and further to lymph node metastases. In particular, PINCH expression was most intense at the tumor invasive margin, which was related to low inflammatory infiltration and independently related to an unfavorable prognosis. Low inflammatory infiltration at the tumor invasive margin was related to advanced tumor stage, worse differentiation and microsatellite instability (MSI). Further, it was independently related to an unfavorable prognosis. Increased blood and lymphatic vessel density was observed in the primary tumors compared with the corresponding normal mucosa. However, neither angiogenesis nor lymphangiogenesis was associated with tumor stage and patients’ survival. Moreover, PINCH was present in a proportion of endothelial cells of the tumor vasculature, and PINCH expression in tumor-associated stroma was positively related to blood vessel density.In primary tumor cells of CRC, strong expression of hRAD50, hMRE11 or hNBS1 was related to microsatellite stability (MSS). A high percentage of hMRE11 expression was associated with less local recurrence and high apoptotic activity. Further, we observed that the expression of hRAD50, hMRE11 or hNBS1 among normal mucosa, primary tumors and metastases in MSS CRC differed from that in MSI CRC. In MSS CRC, the expression intensity of hRAD50, hMRE11 and hNBS1 was consistently increased with respect to normal mucosa, but there was no difference between the primary tumors and metastases. In the primary MSS tumors, the expression of individual or combination of hRAD50/hMRE11/hNBS1 was associated with a favorable prognosis in the same series of the CRCs. Moreover, strong/high hRAD50 in MSS primary tumors was related to earlier tumor stage, better differentiation and high inflammatory infiltration, whereas strong hNBS1 expression tended to be independently related to a favorable prognosis in MSS CRC with earlier tumor stage. However, in MSI CRC, there were neither differences in the expression of hRAD50/hMRE11/hNBS1 among normal mucosa, primary tumors and metastases, nor any association of the protein expressions with clinicopathological variables. On the other hand, frameshift mutations of (A)9 at coding region of hRAD50 were only found in MSI CRC.Our study indicates that 1) PINCH is likely a regulator of angiogenesis, and PINCH expression at the tumor invasive margin is an independent prognostic indicator in CRC. 2) Inflammatory infiltration at the tumor invasive margin is also an independent prognostic indicator in CRC. The lack of association between high inflammatory infiltration and MSI may help to explain the non-association of MSI with survival in CRC patients. 3) Angiogenesis and lymphangiogenesis occur in the early stage of CRC development, but do not associate with CRC progression and patients’ prognosis. 4) hRAD50/hMRE11/hNBS1 may act dependently and independently, playing different roles in MSS and MSI CRC development. In MSS CRC, the strong expression of the three proteins, associated with a favorable prognosis, may present the cellular response against tumor progression. Expression of hNBS1 may be a prognostic indicator for MSS CRC patients in the earlier tumor stage. In MSI CRC, the frameshift mutations at the coding region of hRAD50 may contribute to tumor development.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)