Electronic and Molecular Surface Structures of Dye-Sensitized TiO2 Interfaces

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: The dye-sensitized solar cell is a promising solar cell technology. In these systems the key process for light to electricity conversion is molecular in nature and is initiated in dye molecules adsorbed at a semiconducting surface. This thesis focuses on the electronic and molecular surface structure of the dye/TiO2 interface, and the experimental results were obtained from surface sensitive X-ray based electron spectroscopic methods.Two families of dyes, triarylamine based organic dyes and ruthenium based inorganic dyes, were investigated. The effect of dye structural modications on the interfacial properties was studied, such as the surface concentrations, dye molecular surface orientation, molecular interactions, and energy level matching. Also, the impact of additional parameters such as the incorporation of coadsorbents and the solvents used for dye sensitization were studied and complementary photoelectrochemical characterization was used to demonstrate functional properties corresponding to changes in the molecular layers.The experiments provided information on how specic structural modications change the frontier electronic structure. The results also showed that the adsorption of the organic dye leads to submolecular electronic changes, and that the dye surface orientations in general favor effcient energy conversion. Moreover, effects of solvents and coadsorbents, on both energy level matching between the dye and the TiO2 substrate and the surfacemolecular structure were quantied.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)