Liquid Exfoliation of Molybdenum Disulfide for Inkjet Printing

University dissertation from Sundsvall : Mid Sweden University

Abstract: Since the discovery of graphene, substantial effort has been put toward the synthesis and production of 2D materials. Developing scalable methods for the production of high-quality exfoliated nanosheets has proved a significant challenge. To date, the most promising scalable method for achieving these materials is through the liquid-based exfoliation (LBE) of nanosheetsin solvents. Thin films of nanosheets in dispersion can be modified with additives to produce 2D inks for printed electronics using inkjet printing. This is the most promising method for the deposition of such materials onto any substrate on an industrial production level. Although well-developed metallic and organic printed electronic inks exist on the market, there is still a need to improve or develop new inks based on semiconductor materials such as transition metal dichalcogenides (TMDs) that are stable, have good jetting conditions and deliver good printing quality.The inertness and mechanical properties of layered materials such as molybdenum disulfide (MoS2) make them ideally suited for printed electronics and solution processing. In addition,the high electron mobility of the layered semiconductors, make them a candidate to become a high-performance semiconductor material in printed electronics. Together, these features make MoS2 a simple and robust material with good semiconducting properties that is also suitable for solution coating and printing. It is also environmentally safe.The method described in this thesis could be easily employed to exfoliate many types of 2D materials in liquids. It consists of two exfoliation steps, one based on mechanical exfoliation of the bulk powder utilizing sand paper, and the other inthe liquid dispersion, using probe sonication to liquid-exfoliate the nanosheets. The dispersions, which were prepared in surfactant solution, were decanted, and the supernatant was collected and used for printing tests performed with a Dimatix inkjetprinter. The printing test shows that it is possible to use the MoS2 dispersion as a printed electronics inkjet ink and that optimization for specific printer and substrate combinations should be performed. There should also be advances in ink development, which would improve the drop formation and break-off at the inkjet printing nozzles, the ink jetting and, consequently, the printing quality.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)