Grounding Emotion Appraisal in Autonomous Humanoids

University dissertation from Linköping : Linköping University Electronic Press

Abstract: The work presented in this dissertation investigates the problem for resource management of autonomous robots. Acting under the constraint of limited resources is a necessity for every robot which should perform tasks independent of human control. Some of the most important variables and performance criteria for adaptive behavior under resource constraints are discussed. Concepts like autonomy, self-sufficiency, energy dynamics, work utility, effort of action, and optimal task selection are defined and analyzed as the emphasis is on the resource balance in interaction with a human. The primary resource for every robot is its energy. In addition to the regulation of its “energy homeostasis”, a robot should perform its designer’s tasks with the required level of efficiency. A service robot residing in a human-centered environment should perform some social tasks like cleaning, helping elderly people or delivering goods. Maintaining a proper quality of work and, at the same time, not running out of energy represents a basic two-resource problem which was used as a test-bed scenario in the thesis. Safety is an important aspect of any human-robot interaction. Thus, a new three – resource problem (energy, work quality, safety) is presented and also used for the experimental investigations in the thesis.The main contribution of the thesis is developing an affective cognitive architecture. The architecture uses top-down ethological models of action selection. The action selection mechanisms are nested into a model of human affect based on appraisal theory of emotion. The arousal component of the architecture is grounded into electrical energy processes in the robotic body and is modulating the effort of movement. The provided arousal mechanism has an important functional role for the adaptability of the robot in the proposed two- and three resource scenarios. These investigations are part of a more general goal of grounding highlevel emotion substrates - Pleasure Arousal Dominance emotion space in homeostatic processes in humanoid robots. The development of the architecture took inspiration from several computation architectures of emotion in robotics, which are analyzed in the thesis.Sustainability of the basic cycles of the essential variables of a robotic system is chosen as a basic performance measure for validating the emotion components of the architecture and the grounding process. Several experiments are performed with two humanoid robots – iCub and NAO showing the role of task selection mechanism and arousal component of the architecture for the robot’s self-sufficiency and adaptability.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)