Superantigens in group A streptococcus : gene diversity and humoral immune response

University dissertation from Umeå : Umeå University

Abstract: Group A streptococcus (GAS) is a strictly human pathogen that causes infections ranging from asymptomatic carriage to the highly lethal streptococcal toxic shock syndrome (STSS). GAS are classified according to the sequence of the variable 5’ end of the emm-gene that encodes the surface associated M-protein. In the late 1980s, outbreaks of GAS infections with high rates of STSS were reported in several parts of the world, including Sweden. Superantigens (SAgs), a group of exotoxins, have been described as key mediators of STSS due to their capacity to polyclonally activate T-cells and induce a massive release of inflammatory cytokines. Previous reports have revealed that sera from STSS patients have lower capacity to neutralize this SAg-mediated immune stimulation and a higher prevalence of GAS isolates with specific emm-genotypes during disease outbreaks. The aims of this thesis were to analyse the protective antibody response mounted by the host against SAgs produced by the infecting GAS isolate and to characterise the isolates emm-genotypes and SAg gene profiles. The clinical material examined was collected from patients with STSS, sepsis, erysipelas, or tonsillitis in Sweden between 1986 and 2001. Both acute- and convalescence-phase sera were analyzed, along with the infecting GAS isolates. The 92 clinical GAS isolates examined were found to exhibit a high degree of genetic diversity in terms of the number and identity of their SAg genes. Isolates with a given emm-genotype could be divided into subgroups on the basis of their SAg gene profiles. Ten different SAg gene profiles were identified in the 45 emm1 isolates examined; one of these ten was highly persistent, being observed in 22 isolates collected over 14 years. Two of the 11 known SAg genes in GAS, smeZ-1 and speA, were more prevalent in the emm1 associated profiles than in the SAg gene profiles of isolates with other emm-genotypes. Patients infected by GAS with the emm1-genotype were less likely to produce acute-phase sera that could effectively neutralize the T-cell mitogenicity induced by the infecting isolate’s extracellular products (EP). Sepsis patients whose sera exhibited this lack of neutralizing ability were more prone to developing STSS. Most patients whose acute-phase sera did not effectively neutralize the EP from the infecting isolate lacked protective antibodies in their convalescent-phase sera despite having elevated ELISA titers. The results reported herein show that combining SAg gene profiling with emm-genotyping may be useful for tracking the spread of GAS clones in the community. It was also shown that a lack of neutralizing activity in convalescence-phase sera might be due to an inability of those patients to mount a protective immune response against SAgs produced by the infecting GAS isolate.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.