Modeling Music Studies of Music Transcription, Music Perception and Music Production

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: This dissertation presents ten studies focusing on three important subfields of music information retrieval (MIR): music transcription (Part A), music perception (Part B), and music production (Part C).In Part A, systems capable of transcribing rhythm and polyphonic pitch are described. The first two publications present methods for tempo estimation and beat tracking. A method is developed for computing the most salient periodicity (the “cepstroid”), and the computed cepstroid is used to guide the machine learning processing. The polyphonic pitch tracking system uses novel pitch-invariant and tone-shift-invariant processing techniques. Furthermore, the neural flux is introduced – a latent feature for onset and offset detection. The transcription systems use a layered learning technique with separate intermediate networks of varying depth.  Important music concepts are used as intermediate targets to create a processing chain with high generalization. State-of-the-art performance is reported for all tasks.Part B is devoted to perceptual features of music, which can be used as intermediate targets or as parameters for exploring fundamental music perception mechanisms. Systems are proposed that can predict the perceived speed and performed dynamics of an audio file with high accuracy, using the average ratings from around 20 listeners as ground truths. In Part C, aspects related to music production are explored. The first paper analyzes long-term average spectrum (LTAS) in popular music. A compact equation is derived to describe the mean LTAS of a large dataset, and the variation is visualized. Further analysis shows that the level of the percussion is an important factor for LTAS. The second paper examines songwriting and composition through the development of an algorithmic composer of popular music. Various factors relevant for writing good compositions are encoded, and a listening test employed that shows the validity of the proposed methods.The dissertation is concluded by Part D - Looking Back and Ahead, which acts as a discussion and provides a road-map for future work. The first paper discusses the deep layered learning (DLL) technique, outlining concepts and pointing out a direction for future MIR implementations. It is suggested that DLL can help generalization by enforcing the validity of intermediate representations, and by letting the inferred representations establish disentangled structures supporting high-level invariant processing. The second paper proposes an architecture for tempo-invariant processing of rhythm with convolutional neural networks. Log-frequency representations of rhythm-related activations are suggested at the main stage of processing. Methods relying on magnitude, relative phase, and raw phase information are described for a wide variety of rhythm processing tasks.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)