Synthesis and Characterisation of Potential Hydrogen Storage Materials

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: The dissociative and non-dissociative hydrogen uptake in carbon nanostructures and metallic films were investigated by measurements and analysis of solubility isotherms. The total, non-dissociative, uptake for multi-walled nano-barrels and amorphous nanoporous carbon was determined to be 6.2 and 4.2 wt. % respectively at 77 K and the adsorption energies (at lowest coverage) -7.2 and -4.2 kJ/mol. At 298 K the H-uptake was negligible.At low concentrations the H-uptake of Nb-films is strongly affected by the film thickness. For thicknesses less then about 31 nm, the absorption energy was found to be temperature dependent. Such changes have not been observed in Nb films before. The presence of multiple absorption energies was shown to limit the possibility to obtain relevant absorption and interaction energies by traditional Sievert's and van 't Hoff analysis.The Mg1-xNix system (0<0.43) was investigated with respect to the hydrogen uptake. For Mg2Ni the hydrogen uptake, at an external hydrogen pressure of 1 bar, is close to 1.33 H/M (Mg2NiH4). The enthalpy of formation is smaller in the film as compared to bulk material. The changes in the absorption energy are caused by the adhesion to the substrate as well as the nanocrystallinity of the absorbing layers. The optical band gap of Mg2NiH4 was determined to be 2.4 eV.In Mg1-xYx (0<0.17) it was found that the Y-concentration limits the hydrogen uptake at 1 bar. However, the kinetics of the uptake improves substantially with a minimum of 7 at.% of Y. For Mg-Y the optical band gap (3.6 eV) is independent of Y concentration within the concentration range investigated, while the transmittance decreases with increasing Y content.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)