Copper-transporting proteins and their interactions with platinum-based anticancer substances

University dissertation from Umeå : Umeå Universitet

Abstract:   Cisplatin (CisPt) is an important drug that is used against various cancers, including testicular, ovarian, lung, head, and neck cancer. However, its effects are limited by cellular resistance. The resistance is believed to be multifactorial, and may be mediated to varying degree by multiple systems in cells, one of the proposed systems being the copper (Cu) transporting system. The Cu-importer Ctr1 has proven importance for cellular sensitivity to CisPt by regulating its influx, while the Golgi-localized Cu-ATP:ases ATP7A/B can putatively mediate CisPt efflux and/or drug sequestration. Atox1 is a small Cu-chaperone that normally transfers Cu between Ctr1 and ATP7A/B, prior to delivery of Cu to the proteins in the secretory pathway. Since Ctr1 and ATP7A/B are reportedly involved in CisPt-resistance, CisPt interaction with Atox1 was the focus of the project this thesis is based upon.  Using a variety of techniques, Atox1 was found to bind CisPt, also simultaneously with Cu. The Atox1-CisPt complexes were further probed using selected mutants in studies demonstrating that only the two cysteines (Cys12 and Cys15) in the Cu-binding site of Atox1 are essential for CisPt interactions. A proposed Atox1 di-metal complex containing both Cu and CisPt was found to be monomeric, and no loss of Cu was observed. In vitro experiments demonstrated that CisPt could also bind to metal-binding domain 4 of ATP7B (WD4), and that the drug could be transferred from Atox1 to the domain. These findings indicated that Atox1 may transfer CisPt to ATP7A/B in vivo, utilizing the same transport pathway as Cu. However, the CisPt-bound Atox1 complexes were not stable over time; upon incubation, protein unfolding and aggregation were observed. Thus, in vivo, Atox1 might alternatively be a dead-end sink for CisPt.  The effects of the ligands around the Pt-center of Pt-based anticancer drugs and drug derivatives on Atox1 binding and unfolding were also investigated. The ligands’ chemistry and geometry were shown to dictate the extent and rate of the Pt-based substances interactions with Atox1. Finally, the occurrence of Atox1-CisPt interactions in a biological environment was demonstrated by developing and applying an antibody-based method allowing analysis of metals associated with Atox1 extracted from CisPt-treated cells.  The findings presented in this thesis show that CisPt binds to Atox1 and WD4, also simultaneously with Cu, in vitro. The results support the hypothesis that Cu-transporting proteins can mediate cellular resistance to CisPt in vivo, and provide a deeper chemical understanding of the interactions between the proteins and the drug.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)