Search for dissertations about: "Accelerator Physics and Instrumentation"

Showing result 1 - 5 of 64 swedish dissertations containing the words Accelerator Physics and Instrumentation.

  1. 1. Extreme Electron Beams and Brilliant X-rays : Generation, Manipulation and Characterization of Relativistic Electron Beams for and from Plasma-Based Accelerators

    Author : Jonas Björklund Svensson; Atomfysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; laser; plasma; wakefield; acceleration; accelerator; relativistic; electrons; x-rays; ultra-fast; betatron; laser-wakefield acceleration; plasma-wakefield acceleration; Fysicumarkivet A:2020:Björklund;

    Abstract : This thesis is based on work done by the author on the development of plasma-based electron accelerators driven by ultra-intense laser pulses and dense electron bunches. Plasma based accelerators have several benefits, such as accelerating fields around 1000 times stronger than in “conventional” radio-frequency accelerators, which can allow for shrinking the overall footprint of the accelerator. READ MORE

  2. 2. FPGA-based Instrumentation for Advanced Physics Experiments

    Author : Attila Hidvégi; Samuel Silverstein; Martin Grossmann; Stockholms universitet; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; Instrumentation; Data acquisition; clock distribution; trigger; FPGA; PCB; LHC; ATLAS; XFEL; fysik; Physics;

    Abstract : Modern physical experiments often demand advanced instrumentation based on advances in  technology. This work describes four instrumentation physics projects that are based on modern, high-capacity Field-Programmable Gate Arrays, making use of their versatility, programmability, high bandwidth communication interfaces and signal processing capabilities. READ MORE

  3. 3. Studies of Top Physics Sensitivity and of Pile-Up Effects on Energy Reconstruction in the ATLAS Detector : A Licentiate Thesis About the Treatment of Troublesome $\tau$ and Producing Pulses to Probe Pile-up Problems

    Author : Simon Molander; Sten Hellman; Jörgen Sjölin; Klas Hultqvist; Stockholms universitet; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; tau; top quark; ATLAS; LHC; TILE calorimeter; sensitivity; cross-section; standard model; physics; optimal filtering; energy reconstruction; hadronic tau decay; fysik; Physics;

    Abstract : This thesis presents two studies conducted using the ATLAS detectorat the Large Hadron Collider. The first one is a technical study abouthow out-of-time pile-up affects energy reconstruction using the optimalfiltering 2 algorithm in the TILE calorimeter sub detector. The studyis conducted using a pulse simulator software that is also described. READ MORE

  4. 4. Nonlinear Beam Physics

    Author : Benjamin Folsom; Partikel- och kärnfysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; nonlinear dynamics; Beam dynamics; Accelerator Physics; space charge; Accelerator magnets; simulations multi-particle dynamics;

    Abstract : A condensed treatment of conventional beam physics (both linear and nonlinear) is given for the non-expert; this constitutes a minimum knowhow for constructing simulations of rudimentary beamlines. The criteria for an ideal nonlinear charged-particle simulation algorithm are then presented, leading to the derivation of a symplectic, explicit, Lorentz-covariant integrator. READ MORE

  5. 5. Detector Development, Source Characterization and Novel Applications of Laser Ion Acceleration

    Author : Lovisa Senje; Atomfysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; Laser; Ion; Acceleration; Proton; Water; Sheath; Lifetime; Laser; Ion; Acceleration; Proton; Water; Radiolysis; Sheath; Detector; Fysicumarkivet A:2017:Senje;

    Abstract : The main focus of the work presented in this thesis is on experimental studies oflaser acceleration of protons and other positive ions from solid targets. The topic is explored from three different angles: firstly, the development of diagnostics adapted to the ion pulses, secondly, the characterization of the source of the energetic particles and, finally, the application of laser-accelerated protons for time-resolved radiolysis of glass and water. READ MORE