Search for dissertations about: "Benjamin Svedung Wettervik"

Found 2 swedish dissertations containing the words Benjamin Svedung Wettervik.

  1. 1. Modelling of laser plasma interaction with applications

    Author : Benjamin Svedung Wettervik; Chalmers tekniska högskola; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; electron wakefield acceleration; ion acceleration; coherent X-ray pulses; plasma; Vlasov-Maxwell equations; continuum methods; radiation generation;

    Abstract : The development of laser systems with ultra-high intensities has both opened up prospects for compact particle accelerators, as well as probing QED-effects, which are present in the high intensity regime. To describe laser matter interaction, it is necessary to self-consistently account for the paths of a large number of particles and the corresponding electromagnetic fields, with the addition of stochastic effects at high laser intensities. READ MORE

  2. 2. Modelling of laser plasma interaction with applications to particle acceleration and radiation generation

    Author : Benjamin Svedung Wettervik; Chalmers tekniska högskola; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; plasma; ion acceleration; continuum methods; electron wakefield acceleration; raditation generation; coherent X-ray pulses; Vlasov-Maxwell equations;

    Abstract : The development of laser systems with ultra-high intensities has allowed the study of the relativistic interaction of laser light and ionized matter, plasmas, as well as opened up prospects for compact particle accelerators, generation of high intensity X-ray, XUV radiation, and probing QED-effects, which are present in the high intensity regime. To describe laser matter interaction, it is necessary to self-consistently account for the paths of a large number of particles and the corresponding electromagnetic fields, with the addition of stochastic effects at high laser intensities. READ MORE