Search for dissertations about: "Joseph Schlenoff"

Found 2 swedish dissertations containing the words Joseph Schlenoff.

  1. 1. Design of Cellulose-based Materials by Supramolecular Assemblies

    Author : Tobias Benselfelt; Lars Wågberg; Torbjörn Pettersson; Joseph Schlenoff; KTH; []
    Keywords : NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; NATURAL SCIENCES; NATURVETENSKAP; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Adhesion; adsorption; alginate; assemblies; biodegradable; biomaterials; biopolymers; cellulose; cellulose nanofibrils; CNFs; gas barrier; hemicellulose; interfaces; ion-ion correlation; latex; layer-by-layer; metal-ligand complexes; montmorillonite; multivalent ions; packaging; PISA; polyelectrolyte multilayers; polyelectrolytes; polysaccharides; RAFT; renewable; specific ion effects; supramolecular; surfaces; sustainable; thin films; water-resilient; xyloglucan; Fiber- och polymervetenskap; Fibre and Polymer Science;

    Abstract : Due to climate change and plastic pollution, there is an increasing demand for bio-based materials with similar properties to those of common plastics yet biodegradable. In this respect, cellulose is a strong candidate that is already being refined on a large industrial scale, but the properties differ significantly from those of common plastics in terms of shapeability and water-resilience. READ MORE

  2. 2. Functional Layer-by-Layer films and aerogels of cellulose nanofibrils

    Author : Erdem Karabulut; Lars Wågberg; Joseph B. Schlenoff; KTH; []
    Keywords : ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER;

    Abstract : This thesis deals with the preparation of functional Layer-by-Layer (LbL) films of cellulose nanofibrils (CNFs) and polyelectrolytes. LbL films ranging in thickness from 10 nm to 5 μm were deposited onto both solid surfaces and porous nanocellulose aerogels in order to prepare functional surfaces and materials. READ MORE