Search for dissertations about: "NATURVETENSKAP Fysik Kondenserade materiens fysik Halvledarfysik"

Showing result 21 - 25 of 43 swedish dissertations containing the words NATURVETENSKAP Fysik Kondenserade materiens fysik Halvledarfysik.

  1. 21. Vertical III-V Semiconductor Devices

    Author : Tomas Bryllert; Fasta tillståndets fysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; Halvledarfysik; Semiconductory physics; heterostructure barrier varactor frequency multiplier; field effect transistor; resonant tunneling; artificial molecule; terahertz; nanowire; Quantum dots;

    Abstract : This thesis is based on three projects that deal with vertical III-V semiconductor devices. The work spans over basic research as well as more applied aspects of III-V semiconductor technology. All projects have in common that they rely on advanced epitaxial growth to form the starting material for device fabrication. READ MORE

  2. 22. MOVPE Growth and Characterization of Low-Dimensional III-V Semiconductor Structures

    Author : Niclas Carlsson; Fasta tillståndets fysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; Semiconductory physics; low-dimensional structures; metalorganic vapour phase epitaxy; quantum wells; self-assembled dots; quantum dots; Fysicumarkivet A:1998:Carlsson; Halvledarfysik;

    Abstract : Metalorganic vapour phase epitaxy is used for growth of low-dimensional III-V semiconductor structures. The roughness of heterointerfaces in GaAs/GaInP quantum well structures is studied by photoluminescence emission from extremely narrow quantum wells. READ MORE

  3. 23. Spectroscopic studies of III-V semiconductors in two, one and zero dimensions

    Author : Dan Hessman; Fasta tillståndets fysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; InAs-InP; low-dimensional structures; quantum wells; quantum dots; quantum wires; k.p calculations; type-II; photoluminescence; V grooves; Stranski Krastanow; single dot spectroscopy; GaAs-InP; III-V semiconductors; Fysicumarkivet A:1996:Hessman; InAs-GaAs; GaInAs-InP; Halvledarfysik; InP-GaInP; Semiconductory physics;

    Abstract : In this thesis, spectroscopic studies of quantum wells (QWs), quantum wires (QWRs) and quantum dots (QDs) in III-V semiconductors are presented. The electronic structure of these low-dimensional structures have been studied by absorption, photocurrent, electroreflectance, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. READ MORE

  4. 24. Scanning Tunneling Microscopy Induced Luminescence Studies of Semiconductor Nanostructures

    Author : Ulf Håkanson; Fasta tillståndets fysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; transmission electron microscopy TEM ; III-V semiconductors; low-dimensional structures; nanostructures; single dot spectroscopy; Stranski-Krastanow; quantum dot QD ; Semiconductory physics; polarization; ordering; InP; GaInP; photon mapping; scanning tunneling microscopy STM ; scanning tunneling luminescence STL ; Halvledarfysik; Fysicumarkivet A:2003:Håkanson;

    Abstract : This thesis treats scanning tunneling luminescence (STL) investigations of semiconductor nanostructures. The STL technique combines scanning tunneling microscopy (STM) with detection of photons, induced by the tunneling electrons. The high spatial resolution in STM and the local excitation allow for optical investigations on the nanometer-scale. READ MORE

  5. 25. Zeeman Interaction in Low-Dimensional III-V Semiconductor Structures

    Author : Bernhard Kowalski; Fasta tillståndets fysik; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; optically detected spin resonance; spin resonance; effective g-value; III-V semiconductors; low-dimensional structures; quantum wells; quantum dots; Stranski-Krastanow; photoluminescence; GaInAs; single dot Magneto-luminescence; Fysicumarkivet A:1997:Kowalski; Halvledarfysik; Semiconductory physics; GaInAs-InP;

    Abstract : The Zeeman interaction in low-dimensional III-V semiconductor nanostructures is studied. The effective g-value of bulk InGaAs is measured by two different spin resonance techniques. Experimental conditions were found to control the Overhauser effect, thus enabling a highly accurate determination of the g-value, g* = -4.070 ± 0. READ MORE