Search for dissertations about: "conversion industrial"

Showing result 1 - 5 of 255 swedish dissertations containing the words conversion industrial.

  1. 1. Ethanol production from lignocellulose using high local cell density yeast cultures. Investigations of flocculating and encapsulated Saccharomyces cerevisiae

    Author : Johan Westman; Högskolan i Borås; []
    Keywords : TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; NATURVETENSKAP; NATURAL SCIENCES; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; yeast; encapsulation; lignocellulose; ethanol; fermentation; flocculation; inhibitors; tolerance; xylose; co-utilisation; Resource Recovery; Resursåtervinning; Resource Recovery;

    Abstract : Efforts are made to change from 1st to 2nd generation bioethanol production, using lignocellulosics as raw materials rather than using raw materials that alternatively can be used as food sources. An issue with lignocellulosics is that a harsh pretreatment step is required in the process of converting them into fermentable sugars. READ MORE

  2. 2. Biochemical conversion of biomass : hydrothermal pretreatment, by-product formation, conditioning, enzymatic saccharification, and fermentability

    Author : Dimitrios Ilanidis; Leif J. Jönsson; Carlos Martin; Björn Alriksson; Eulogio Castro; Umeå universitet; []
    Keywords : NATURVETENSKAP; NATURAL SCIENCES; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; lignocellulosic biomass; hydrothermal pretreatment; enzymatic digestibility; ethanolic fermentation; microbial inhibitors; conditioning;

    Abstract : Lignocellulosic residues have great potential as feedstocks for production of bio-based chemicals and fuels. One of the main routes is biochemical conversion, which typically includes pretreatment, enzymatic saccharification, microbial fermentation of sugars, and valorization of hydrolysis lignin. READ MORE

  3. 3. Superabsorbent Polymers from the Cell Wall of Zygomycetes Fungi

    Author : Akram Zamani; Högskolan i Borås; []
    Keywords : MEDICIN OCH HÄLSOVETENSKAP; MEDICAL AND HEALTH SCIENCES; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; NATURVETENSKAP; NATURAL SCIENCES; chitosan; cell wall; chitin; polyphosphates; dilute sulfuric acid; zygomycetes fungi;

    Abstract : The present thesis presents new renewable, antimicrobial and biodegradable superabsorbent polymers (SAPs), produced from the cell wall of zygomycetes fungi. The cell wall was characterized and chitosan, being one of the most important ingredients, was extracted, purified, and converted to SAP for use in disposable personal care products designed for absorption of different body fluids. READ MORE

  4. 4. Bioprocess development for biochemical conversion of lignocellulose

    Author : Ruifei Wang; Chalmers tekniska högskola; []
    Keywords : TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; NATURVETENSKAP; NATURAL SCIENCES; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Lignocellulose; strain engineering; stress tolerance; kinetic modelling; high gravity; scale-up; biofuels; SSCF; process development; Saccharomyces cerevisiae;

    Abstract : Due to its low environmental impact and high maturity of the fuel ethanol market, lignocellulosic ethanol is a promising option for reducing the carbon footprint in the transport sector. The characteristics of lignocellulosic feedstocks, such as varied sugar composition, low sugar density, low solubility, recalcitrance to enzymatic degradation, and inhibitors formed during thermochemical pretreatment, have so far limited the production process, and costs for conversion of lignocellulosic materials to ethanol are still high. READ MORE

  5. 5. Mapping Phenolics Metabolism and Metabolic Engineering of Saccharomyces cerevisiae for Increased Endogenous Catabolism of Phenolic Compounds

    Author : Peter Adeboye; Chalmers tekniska högskola; []
    Keywords : TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; toxicity; Keywords: Phenolic compounds; Saccharomyces cerevisiae; conversion; inhibitor;

    Abstract : AbstractSustainable, biotechnological utilization of non-food, plant biomass has been demonstrated to be a viable means of producing energy, fuels, materials and chemicals, representing a paradigm shift from fossil-derived sources. However, the presence of chemicals that inhibit fermentation by microorganisms such as Saccharomyces cerevisiae, commonly used for bioconversion, causes a bottleneck in such processes. READ MORE