Search for dissertations about: "hafnium oxide"

Showing result 1 - 5 of 10 swedish dissertations containing the words hafnium oxide.

  1. 1. CVD and ALD of Group IV- and V-Oxides for Dielectric Applications

    Author : Katarina Forsgren; Steven George; Uppsala universitet; []
    Keywords : NATURAL SCIENCES; NATURVETENSKAP; Chemistry; CVD; ALD; Dielectric constant; Tantalum oxide; Ta2O5; Zirconium oxide; ZrO2; Hafnium oxide; HfO2; QCM; Kemi; Chemistry; Kemi; Inorganic Chemistry; oorganisk kemi;

    Abstract : Due to the constantly decreasing dimensions of electronic devices, the conventional dielectric material in transistors and capacitors, SiO2, has to be replaced by a material with higher dielectric constant. Some of the most promising candidates are tantalum oxide,Ta2O5, zirconium oxide, ZrO2 and hafnium oxide, HfO2. READ MORE

  2. 2. Employing Metal Iodides and Oxygen in ALD and CVD of Functional Metal Oxides

    Author : Jonas Sundqvist; Anders Hårsta; Roy Gordon; Uppsala universitet; []
    Keywords : NATURAL SCIENCES; NATURVETENSKAP; NATURVETENSKAP; NATURAL SCIENCES; Inorganic chemistry; CVD; ALD; tantalum oxide; hafnium oxide; tin oxide; epitaxy; Ta2O5; HfO2; SnO2; XRD; Oorganisk kemi; Inorganic chemistry; Oorganisk kemi; Inorganic Chemistry; Oorganisk kemi;

    Abstract : Many materials exhibit interesting and novel properties when prepared as thin films. Thin film metal oxides have had an impact on the technological progress of the microelectronics mainly due to their electrical and optical properties. READ MORE

  3. 3. Silicon nanowire based devices for More than Moore Applications

    Author : Ganesh Jayakumar; Per-Erik Hellström; Mikael Östling; Luca Selmi; KTH; []
    Keywords : silicon nanowire; biosensor; CMOS; sequential integration; lab-on-chip; LOC; high-K; high-K integration on SiNW biosensor; ALD; fluid gate; back gate; SiNW; SiNW pixel matrix; FEOL; pattern transfer lithography; sidewall transfer lithography; STL; multi-target bio detection; BEOL; nanonets; silicon nanonets; SiNN-FET; SiNW-FET; CMOS integration of nanowires; CMOS integration of nanonets; monolithic 3D integration of nanowires; above-IC integration of nanowires; DNA detection using SiNW; SiNW biosensor; dry environment DNA detection; DNA hybridization detection using SiNW; SiNW functionalization; SiNW silanization; SiNW grafting; FEOL integration of SiNW; BEOL integration of SiNW; sequential multiplexed biodetection; biodetection efficiency of SiNW; front end of line integration of SiNW; back end of line integration of SiNW; SiNW dry environment functionalization; APTES cross-linker; accessing SiNW test site; fluorescence microscopy of SiNW; geometry of SiNW; SiNW biosensor variability; top-down fabrication of SiNW; bottom-up fabrication of SiNW; VLS method; ams foundry CMOS process; adding functionality in BEOL process; sensor integration in BEOL process; hafnium oxide; HfO2; aluminium oxide; Al2O3; TiN backgate; Nickel source drain; ISFET; ion sensitive field effect transistor; Overcoming Nernst limit of detection using SiNW; SiNW sub-threshold region operation; ASIC; SOC; SiGe selective epitaxy; epitaxial growth of SiNW; epitaxial growth of nanowires; epitaxial growth of nanonets; nickel silicide contacts; salicide process; high yield SiNW fabrication; high volume SiNW fabrication; silicon ribbon; SiRi pixel; SiRi biosensor; SiRi DNA detection; monolithic 3D integration of nanonets; above-IC integration of nanonets; impact of back gate voltage on silicon nanowire; impact of back gate voltage on SiNW; FDSOI; fully depleted silicon on insulator technology; metal backgate; wafer scale integration of SiNW; wafer scale integration of nanonets; impact of backgate voltage on CMOS inverter circuit; frequency divider; D flip-flop; Informations- och kommunikationsteknik; Information and Communication Technology;

    Abstract : Silicon nanowires (SiNW) are in the spotlight for a few years in the research community as a good candidate for biosensing applications. This is attributed to their small dimensions in nanometer scale that offers high sensitivity, label-free detection and at the same time utilizing small amount of sample. READ MORE

  4. 4. Engineering Surfaces of Solid-State Nanopores for Biomolecule Sensing

    Author : Shiyu Li; Shi-Li Zhang; Michael Mayer; Uppsala universitet; []
    Keywords : ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; solid-state nanopores; surface engineering; DNA sensing; DNA polymerase; optical detection; lipid bilayer; hafnium oxide; electron beam induced deposition;

    Abstract : Nanopores have emerged as a special class of single-molecule analytical tool that offers immense potential for sensing and characterizing biomolecules such as nucleic acids and proteins. As an alternative to biological nanopores, solid-state nanopores present remarkable versatility due to their wide-range tunability in pore geometry and dimension as well as their excellent mechanical robustness and stability. READ MORE

  5. 5. Investigation of hafnium for biomedical applications : corrosion and tribocorrosion in simulated body fluids

    Author : Jorge Rituerto Sin; Luleå tekniska universitet; []
    Keywords : ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; Maskinelement; Machine Elements;

    Abstract : Metals have excellent properties, such as high strength, ductility and toughness, which make them the material of choice for many biomedical applications. However, the main drawback of metals is their general tendency to corrode, which is an important factor when they are used as biomaterials due to the corrosive nature of the human body. READ MORE