Search for dissertations about: "strömningsmekaniska beräkningar"

Found 2 swedish dissertations containing the words strömningsmekaniska beräkningar.

  1. 1. Numerical predictions of heat-transfer applied to electrical machines

    Author : Kristian Rönnberg; Christophe Duwig; Anders Dahlkild; Luca Peretti; Jens Honore Walther; KTH; []
    Keywords : ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; TEKNIK OCH TEKNOLOGIER; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; ENGINEERING AND TECHNOLOGY; Electric machines; energy efficiency; heat transfer; thermal management; high fidelity simulation; computational fluid dynamics CFD ; proper orthogonal decomposition POD ; lumped parameter thermal network LPTN ; Elektriska maskiner; energieffektivitet; verkningsgrad; värmeöverföring; värmehantering; simuleringar med hög upplösning; strömningsmekaniska beräkningar; proper orthogonal decomposition POD ; termiska nätverk; Teknisk mekanik; Engineering Mechanics;

    Abstract : In order to meet the need for increased electrification, and at the same time reduce the total demand for electric energy, behavior change and technological innovation is needed. Over the decades power density of electric motors have increased, leading to increased demands on the cooling system design and performance. READ MORE

  2. 2. Advancing the life cycle energy optimisation methodology

    Author : Hamza Bouchouireb; Ciarán J. O'Reilly; Peter Göransson; Rupert J. Baumgartner; José Potting; Tracy Bhamra; KTH; []
    Keywords : ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; ENGINEERING AND TECHNOLOGY; TEKNIK OCH TEKNOLOGIER; HUMANITIES; HUMANIORA; TEKNIK OCH TEKNOLOGIER; HUMANIORA; ENGINEERING AND TECHNOLOGY; HUMANITIES; life cycle energy; vehicle design; optimisation; functional conflicts; livscykelenergi; fordonsdesign; optimering; tvär-funktionella konflikter; Vehicle and Maritime Engineering; Farkostteknik;

    Abstract : The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, while complying with a set of functional constraints. This effectively balances trade-offs, and therewith avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, operation of the vehicle, and end-of-life phases. READ MORE