Uncertainties in Mobile Learning applications : Software Architecture Challenges

Abstract: The presence of computer technologies in our daily life is growing by leaps and bounds. One of the recent trends is the use of mobile technologies and cloud services for supporting everyday tasks and the sharing of information between users. The field of education is not absent from these developments and many organizations are adopting Information and Communication Technologies (ICT) in various ways for supporting teaching and learning. The field of Mobile Learning (M-Learning) offers new opportunities for carrying out collaborative educational activities in a variety of settings and situations. The use of mobile technologies for enhancing collaboration provides new opportunities but at the same time new challenges emerge.One of those challenges is discussed in this thesis and it con- cerns with uncertainties related to the dynamic aspects that characterized outdoor M-Learning activities. The existence of these uncertainties force software developers to make assumptions in their developments. However, these uncertainties are the cause of risks that may affect the required outcomes for M-Learning activities. Mitigations mechanisms can be developed and included to reduce the risks’ impact during the different phases of development. However, uncertainties which are present at runtime require adaptation mechanisms to mitigate the resulting risks.This thesis analyzes the current state of the art in self-adaptation in Technology-Enhanced Learning (TEL) and M-Learning. The results of an extensive literature survey in the field and the outcomes of the Geometry Mobile (GEM) research project are reported. A list of uncertainties in collaborative M-Learning activities and the associated risks that threaten the critical QoS outcomes for collaboration are identified and discussed. A detailed elaboration addressing mitigation mechanisms to cope with these problems is elaborated and presented. The results of these efforts provide valuable insights and the basis towards the design of a multi-agent self-adaptive architecture for multiple concerns that is illustrated with a prototype implementation. The proposed conceptual architecture is an initial cornerstone towards the creation of a decentralized distributed self-adaptive system for multiple concerns to guarantee collaboration in M-Learning. 

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)