Transportation Mission Based Optimization of Heavy Vehicle Fleets including Propulsion Tailoring

Abstract: Over decades freight vehicles were produced for a wide range of operational domains so that vehicle-manufacturers were not concerned much about the actual use-cases of the vehicles. Environmental issues, costumer expectations along with growing demand on freight transport created a competitive environment in providing better transportation solutions. In this thesis, it was proposed that freight vehicles can be designed more cost- and energy-efficiently targeting rather narrow ranges of operational domains and transportation use-cases. For this purpose, optimization-based methods were applied to deliver customized vehicles with tailored propulsion components that fit best given transportation missions and operational environment. Optimization-based design of vehicle components showed to be more effective considering optimization of transportation mission infrastructure simultaneously, including charging stations, routing and fleet composition and size, especially in case of electrified propulsion. It was observed that by implementing integrated vehicle hardware-transportation optimization, total cost of ownership can be reduced up to 35\%, in case of battery electric heavy vehicles. Furthermore, throughout thesis, the effect of propulsion system components size on optimal energy management strategy in hybrid heavy vehicles was studied; a methodology for solving fleet-size and mix-vehicle routing problem including enormous number of vehicle types were introduced; and the impact of Automated Driving Systems on electrified propulsion was presented.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)