Experimental cardiopulmonary cerebral resuscitation : A study of cerebral perfusion with special reference to the postresuscitation disturbances

Abstract: Ischemic neuronal injury continues to be a major delimiting factor in achieving successful clinical outcomesafter resuscitation from cardiac arrest. In this thesis, a pig model of cardiopulmonary resuscitation (CPR) wasused to address the effects of different interventions on cerebral blood flow and oxygenation during CPR and theinitial postresuscitation period. A novel technique is presented to quantify the reperfusion oxidative injury.Maximization of cerebral blood flow during CPR by open-chest cardiac compression, continuous aortic balloon occlusion, and intra-aortic administration of hypertonic saline-dextran (HSD) did not ameliorate thepostresuscitation hypoperfusion or improve the cerebral oxygen extraction ratio or tissue pH. These findings disaffirm earlier studies suggesting that conserving brain viability after global ischemia is mostly a question ofmaintaining high perfusion pressure.Despite an increased cerebral perfusion pressure during CPR, intra-aortic administered epinephrineabove the aortic balloon occlusion did not further improve cerebral blood flow and oxygenation. This findingmay indicate adverse effects of epinephrine on cerebral vascular beds, possibly induced by a relatively highconcentration of epinephrine when administered above the site for aortic balloon occlusion.The IV administration of equipotent doses of epinephrine or vasopressin during CPR resulted incomparable hemodynamic changes. The peak increase in cerebral cortical blood flow, however, was reachedapproximately 30 sec later by vasopressin. Furthermore, the second bolus of vasopressin during CPR did notaugment cerebral perfusion, whereas epinephrine did. Consequently, reports suggesting that vasopressin issuperior to epinephrine with respect to its effects on central hemodynamics and vital organ blood flow may bebiased by the pharmacodynamic differences between the drugs, depending on the time point at which blood flowmeasurements are performed.In comparison with IV vasopressin, vasopressin administered above the aortic balloon occlusion resulted in a significant increase in cerebral perfusion pressure during CPR, but not after restoration of spontaneous circulation (ROSC). Cerebral cortical blood flow was, however, not improved during CPR, whereas a significant increase was recorded after ROSC. Relatively higher concentrations of vasopressin above the sitefor intra-aortic balloon occlusion may, therefore, predominantly induce cerebral cortical vasoconstriction duringCPR but induce vasodilatation after ROSC.Assessment of oxidative stress or inflammation have been extremely difficult to attain. In our pig model of resuscitation, an association wasobserved between the duration of cardiac arrest and jugular bulb levels of 8-iso-PGF2α, a major isoprostane and a novel index of oxidative injury. 8-iso-PGF2α, and the prostaglandin 15-K-DH-PGF2α, increased within 5 min after ROSC and remained so up to 2 h, indicating the interval of time during which cerebral reperfusion oxidative injury and inflammatory response may occur and are potentially preventable.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.