Ionic liquids The solid-liquid interface and surface forces

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Ionic liquids (ILs) present new approaches for controlling interactions at the solid-liquid interface. ILs are defined as liquids consisting of bulky and asymmetric ions, with a melting point below 373 K. Owing to their amphiphilic character they are powerful solvents but also possess other interesting properties. For example, ILs can self-assemble and are attracted to surfaces due to their charged nature. As a result, they are capable of forming nanostructures both in bulk and at interfaces. This thesis describes how the solid-IL interface responds to external influences such as elevated temperatures, the addition of salt and polarisation. An improved understanding of how these factors govern the surface composition can provide tools for tuning systems to specific applications such as friction.Normal and friction forces are measured for ethylammonium nitrate (EAN) immersed between a mica surface and a silica probe, at different temperatures or salt concentrations. The results demonstrate that an increase in temperature or low concentrations of added salt only induce small changes in the interfacial structure and that the boundary layer properties remain intact. In contrast, at sufficiently large salt concentrations the smaller lithium ion prevails and the surface composition changes. The interfacial layer of a similar IL is also investigated upon the addition of salt and the results reveal that lithium ions affect the surface composition differently depending on the ion structure of the IL. This demonstrates that the surface selectivity strongly depends on the ion chemistry.Remarkably, a repulsive double layer force manifests itself for EAN at 393 K, which is not observed for lower temperatures. This indicates a temperature dependent change in EAN’s microscopic association behaviour and has general implications for how ILs are perceived.A new method is developed based on a quartz crystal microbalance to investigate how the surface compositions of ILs respond to polarisation. The approach demonstrates that interfacial layers of both a neat IL and an IL dissolved in oil can be controlled using potentials of different magnitudes and signs. Furthermore, the method enables two independent approaches for monitoring the charges during polarisation which can be used to quantify the surface composition. The technique also provides information on ion kinetics and surface selectivity.This work contributes to the fundamental understanding of the solid-IL interface and demonstrates that the surface composition of ILs can be controlled and monitored using different approaches.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)