Synthesis and Characterization of High Entropy Alloy and Coating

University dissertation from Luleå : Luleå tekniska universitet

Abstract: High entropy alloys (HEAs) are a new class of alloys that contains five or more principal elements in equiatomic or near-equiatomic proportional ratio. The configuration entropy in the HEAs tends to stabilize the solid solution formation, such as body-centered-cubic (BCC), face-centered-cubic (FCC) and/or hexagonal-closed-pack (HCP) solid solution. The high number of principal elements present in HEAs results in severe lattice distortion, which in return gives superior mechanical properties compared to the conventional alloys. HEAs are considered as a paradigm shift for the next generation high temperature alloys in extreme environments, such as aerospace, cutting tools, and bearings applications.The project is based on the development of refractory high entropy alloy and film. The first part of the project involves designing high entropy alloy of CuMoTaWV using spark plasma sintering (SPS) at 1400 oC. The sintered alloy showed the formation of a composite of BCC solid solution (HEA) and V rich zones with a microhardness of 600 HV and 900 HV, respectively. High temperature ball-on-disc tribological studies were carried out from room temperature (RT) to 600 oC against Si3N4 counter ball. Sliding wear characterization of the high entropy alloy composite showed increasing coefficient of friction (COF) of 0.45-0.67 from RT to 400 oC and then it decreased to 0.54 at 600 oC. The wear rates were found to be low at RT (4 × 10⁠−3 mm⁠3/Nm) and 400 oC (5 × 10⁠−3 mm⁠3/Nm) and slightly high at 200 oC (2.3 × 10⁠−2 mm⁠3/Nm) and 600 oC (4.5 × 10⁠−2 mm⁠3/Nm). The tribology tests showed adaptive behavior with lower wear rate and COF at 400 oC and 600 oC, respectively. The adaptive wear behavior at 400 oC was due to the formation of CuO that protected against wear, and at 600 oC, the V-rich zones converted to elongated magneli phases of V2O5 and helped in reducing the friction coefficient.The second part of the project consists of sintering of novel CuMoTaWV target material using SPS and depositing CuMoTaWV refractory high entropy films (RHEF) using DC-magnetron sputtering on silicon and 304 stainless steel substrate. The deposited films showed the formation of nanocrystalline BCC solid solution. The X-ray diffraction (XRD) studies showed a strong (110) preferred orientation with a lattice constant and grain size of 3.18 Å and 18 nm, respectively. The lattice parameter were found to be in good agreement with the one from the DFT optimized SQS (3.16 Å). The nanoindentation hardness measurement at 3 mN load revealed an average hardness of 19 ± 2.3 GPa and an average Young’s modulus of 259.3 ± 19.2 GPa. The Rutherford backscattered (RBS) measurement showed a gradient composition in the cross-section of the film with W, Ta and Mo rich at the surface, while V and Cu were found to be rich at the substrate-film interface. AFM measurements showed an average surface roughness (Sa) of 3 nm. Nano-pillars of 440 nm diameter from CuMoTaWV RHEFs were prepared by ion-milling in a focused-ion-beam (FIB) instrument, followed by its compression. The compressional yield strength and Young’s modulus was calculated to be 10.7 ± 0.8 GPa and 196 ± 10 GPa, respectively. Room temperature ball-on-disc tribological test on the CuMoTaWV RHEF, after annealing at 300 oC, against E52100 alloy steel (Grade 25, 700-880 HV) showed a steady state COF of 0.25 and a low average wear rate of 6.4 x 10-6 mm3/Nm.