Microbial Ecosystem Functions Along the Steep Oxygen Gradient of the Landsort Deep, Baltic Sea

University dissertation from Huddinge : Södertörns högskola

Abstract: Through complex metabolic interactions aquatic microbial life is essential as a driver of ecosystem functions and hence a prerequisite for sustaining plant and animal life in the sea and on Earth. Despite its ecological importance, infor­mation on the complexity of microbial functions and how these are related to environmental conditions is limited. Due to climate change and eutrophication, marine areas facing oxygen depletion are increasing and predicted to continue to do so in the future. Vertically steep oxygen gradients are particularly pronoun­ced in the Baltic Sea. In this thesis, therefore, the ecosystem functions of micro­bial communities were investigated, using metagenomics, to understand how they were distributed along the steep oxygen gradient at the Landsort Deep, the deepest point of the Baltic Sea. Furthermore, microbial communities from the Lands­ort Deep transect were compared to microbial communities of other marine environments to establish whether the environment at this site resulted in a characteristic community. To reveal what microbial community functions and taxa were active in the anoxic sediment a metatranscriptomic approach was used. Results showed a marked effect of the coupled environmental parameters dissolved oxygen, salinity and temperature on distribution of taxa and par­ti­cularly community functions. Microbial communities showed functional capa­cities consistent with a copiotrophic life-style dependent on organic ma­terial sinking through the water column. The eutrophic condition with high organic load was further reflected in the metatranscriptome of the anoxic sedi­ment com­munity, which indicated active carbon mineralisation through ana­erobic hetero­trophic-autotrophic community synergism. New putative linkages between nitro­gen and- sulphur metabolisms were identified at anoxic depths. Further­more, viable Cyanobacteria in the anoxic sediment was evident from the tran­script analyses as another reflection of marine snow. High abundance and expres­­sion of integron integrases were identified as a charac­teristic feature of the Lands­ort Deep communities, and may provide these communities with a mech­an­ism for short-term-adaptation to environmental change. In summary, this thesis clearly documents what impact eutrophication and oxygen depletion have on microbial community functions. Furthermore, it specifically advances the mechanistic insight into microbial processes in anoxic deep-water sediment at both genomic and transcriptional level. Given the predicted progress of oxygen depletion in marine and brackish environments, this work advances information necessary to estimate effects on marine and in particular brackish ecosystem functions where anoxic conditions prevail.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.