Numerical modeling of coupled thermo-hydro-mechanical processes in geological porous media

University dissertation from Stockholm : KTH

Abstract: Coupled Thermo-Hydro-Mechanical (THM) behavior in geological porous media has been a subject of great interest in many geoengineering disciplines. Many attempts have been made to develop numerical prediction capabilities associated with topics such as the movement of pollutant plumes, gas injection, energy storage, geothermal energy extraction, and safety assessment of repositories for radioactive waste and spent nuclear fuel. This thesis presents a new numerical modeling approach and a new computer code for simulating coupled THM behavior in geological porous media in general, and compacted bentonite clays in particular, as buffer materials in underground radioactive waste repositories.New governing equations were derived according to the theory of mixtures, considering interactions among solid-phase deformation, flows of water and gases, heat transport, and phase change of water. For three-dimensional problems, eight governing equations were formulated to describe the coupled THM processes.A new thermal conductivity model was developed to predict the thermal conductivity of geological porous media as composite mixtures. The proposed model considers the combined effects of solid mineral composition, temperature, liquid saturation degree, porosity and pressure on the effective thermal conductivity of the porous media. The predicted results agree well with the experimental data for MX80 bentonite.A new water retention curve model was developed to predict the suction-saturation behavior of the geological porous media, as a function of suction, effective saturated degree, temperature, porosity, pore-gas pressure, and the rate of saturation degree change with time. The model was verified against experimental data of the FEBEX bentonite, with good agreement between measured and calculated results.A new finite element code (ROLG) was developed for modeling fully coupled thermo-hydro-mechanical processes in geological porous media. The new code was validated against several analytical solutions and experiments, and was applied to simulate the large scale in-situ Canister Retrieval Test (CRT) at Äspö Hard Rock Laboratory, SKB, Sweden, with good agreement between measured and predicted results. The results are useful for performance and safety assessments of radioactive waste repositories.