Resonances, dissipation and decoherence in exotic and artificial atoms

University dissertation from Stockholm : Department of Physics, Stockholm University

Abstract: There are several reasons why exotic and artificial atoms attract the interest of different scientific communities.In exotic atoms, matter and antimatter can coexist for surprisingly long times. Thus, they present a unique natural laboratory for high precision antimatter studies. In artificial atoms, electrons can be confined in an externally controlled way. This aspect is crucial, as it opens new possibilities for high precision measurements and also makes artificial atoms promising potential candidates for qubits, i.e. the essential bricks for quantum computation.The first part of the thesis presents theoretical studies of resonant states in antiprotonic atoms and spherical two-electron quantum dots, where well established techniques, frequently used for conventional atomic systems, can be applied after moderate modifications. In the framework of Markovian master equations, it is then demonstrated that systems containing resonant states can be approached as open systems in which the resonance width determines the environmental coupling. The second part of the thesis focuses on possible quantum computational aspects of two kinds of artificial atoms, quantum dots and Penning traps. Environmentally induced decoherence, the main obstacle for a practical realization of a quantum computer based on these devices, is studied within a simple phenomenological model. As a result, the dependence of the decoherence timescales on the temperature of the heat bath and environmental scattering rates is obtained.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)