Thermal properties of volume Bragg gratings and its implications on lasers

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: This thesis contains the results of research on the spectral control of lasers, specifically, the thermal limitations of volume Bragg gratings (VBGs), employed as laser-cavity end mirrors. The investigations consisted of both experiments and numerical simulations. For the experiments, a diode-pumped Yb:KYW laser with a VBG that had an absorption coefficient of 2.8% cm-1, in the 1 μm spectral region, was constructed. The computer model comprised of a transfer-matrix model and a three-dimensional, finite element model, working together.The absorption of the reflected laser beam changed the reflecting properties of the VBG, which affected the laser’s stability and other performances. The primary effect was a broadening of the grating spectrum accompanied by decreased diffraction efficiency. The reduced reflectivity lead to a leakage of the radiation through the grating during lasing. Both the experiments and the simulations showed that the laser became successively more unstable when the power was increased. Also, the simulations showed that this increased sensitivity was due to a reshaping of the intensity distribution profile inside the grating, which, in turn, lead to a sharp reduction of the diffraction efficiency. For circulating powers above this limit, the laser output rolled off and the power was instead leaking out through the VBG.Furthermore, the simulations also showed that the power limit was highly dependent on the length of the employed VBG. For instance, a 2 mm long VBG could withstand approximately 9.5 times higher incident power than a 10 mm long one could. Also, it was found that the limit, expressed in the terms of the incident power, related approximately linearly to the size of the beam radius.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.