On the influence of imperfections on microstructure and properties of recycled Al-Si casting alloys

Abstract: There are great energy savings to be made by recycling aluminium; as little as 5% of the energy needed for primary aluminium production may be required. Striving to produce high quality aluminium castings requires knowledge of microstructural imperfections, which is extra important when casting recycled aluminium that generally contains higher levels of imperfections compared to primary aluminium. Imperfections include amongst others Si, Fe, and Mn as well as oxides. Si is needed for castability, but it may also initiate fracture. There are different types of Fe-rich intermetallics influencing properties of castings, generally in a negative direction. Oxides constitute cracks and they are elusive because they are difficult to quantify.This thesis aims to increase knowledge about imperfections in recycled aluminium castings originating from alloying elements and the melt. Experiments were performed in advanced laboratory equipment, including X-radiographic imaging during solidification and in-situ tensile testing in a scanning electron microscope. Experiments were also performed at industrial foundry facilities.The experiments showed that the nucleation temperature of primary α-Fe intermetallics increased with higher Fe, Mn, and Cr contents. Primary α-Fe are strongly suggested to nucleate on oxides and to grow in four basic morphologies. Lower nucleation frequency of α-Fe promoted faster growth and hopper crystals while higher nucleation frequency promoted slower growth rates and massive crystals. Results also showed that a decrease in the size of the eutectic Si and plate-like β-Fe intermetallics improved tensile properties, foremost the elongation to fracture. In β-Fe containing alloys the transversely oriented intermetallics initiated macrocracks that are potential fracture initiation sites. In alloys with primary α-Fe foremost clusters of intermetallics promoted macrocracks. In fatigue testing, a transition from β-Fe to α-Fe shifted the initiation sites from oxides and pores to the α-Fe, resulting in a decrease of fatigue strength. Oxides in Al-Si alloys continue to be elusive; no correlations between efforts to quantify the oxides and tensile properties could be observed.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)