Dynamic knee stability after anterior cruciate ligament injury : Emphasis on rehabilitation

Abstract: Anterior cruciate ligament injury leads to increased sagittal tibial translation, and perceptions of instability and low confidence in the knee joint are common. Many patients have remaining problems despite treatment and are forced to lower their activity level and prematurely end their career in sports. The effect of ACL reconstruction and/or rehabilitation on dynamic knee stability is not completely understood. The overall aim of this thesis was to study the dynamic knee stability during and after rehabilitation in individuals with ACL injury. More specific aims were 1) to elaborate an evaluation method for muscle strength, 2) to evaluate the effect of exercises in closed and open kinetic chain, and 3) to evaluate dynamic knee stability in patients with ACL deficiency or ACL reconstruction.Sagittal tibial translation and knee flexion angle were measured using the CA‐4000 computerised goniometer linkage. Muscle activation was registered with electromyography.The intra‐ and inter‐rater reliability of 1 repetition maximum (RM) of seated knee extension was clinically acceptable. The inter‐rater reliability of 1RM of squat was also acceptable, but the intra‐rater reliability was lower. The systematic procedure for the establishment of 1RM that was developed can be recommended for use in the clinic.One specific exercise session including cycling and a maximum number of knee extensions and heel raises did not influence static or dynamic sagittal tibial translation in uninjured individuals. A comprehensive rehabilitation program with isolated quadriceps training in OKC led to significantly greater isokinetic quadriceps strength compared to CKC rehabilitation in patients with ACL deficiency. Hamstring strength, static and dynamic translation, and functional outcome were similar between groups. Five weeks after ACL reconstruction, seated knee extension produced more anterior tibial translation compared to the straight leg raise and standing on one leg. All exercises produced less or equal amount of anterior tibial translation as the 90N Lachman test.Five weeks after the ACL reconstruction the static and dynamic tibial translation in the ACL reconstructed knee did not differ from the tibial translation on the uninjured leg. Patients in the early phase after ACL injury or ACL reconstruction used a joint stiffening strategy including a reduced peak knee extension angle during gait and increased hamstring activation during activity, which reduces the dynamic tibial translation. Patients with ACL deficiency that completed a four months rehabilitation program used a movement pattern that was more close to normal.