On the recent Arctic Warming

University dissertation from Stockholm : Meteorologiska institutionen (MISU)

Abstract: The Arctic region attracts considerable scientific interest in these years. Some of the Earth's most pronounced signs of the recent climate change are found here. The summer sea-ice cover is shrinking at an alarming rate. At the same time the region warms faster than the rest of the globe.The sea-ice reduction implies an increase of solar-radiation absorption at the surface leading to warming which is expected to be larger at higher than at lower latitudes. It is therefore often assumed that the sea-ice reduction is a major cause of the observed Arctic temperature amplification. However, results presented in this thesis suggest that the snow and ice-albedo feedbacks are a contributing but not dominating mechanism behind the Arctic amplification. A coupled climate-model experiment with a doubling of the atmospheric CO2 concentration reveals a considerable Arctic surface-air-temperature amplification in a world without surface-albedo feedback. The amplification is only 8 % larger when this feedback is included. Instead the greenhouse effect associated with an increase of humidity and cloud cover over the Arctic seems to play a major role for the amplification.Reanalysis data, which are partly based on observations, show Arctic temperature amplification well above the surface in the troposphere. In the summer season, the amplification has its maximum at ~ 2 km height. These trends cannot be explained by the snow- and ice-albedo feedbacks which are expected to induce the largest amplification near the surface. Instead, a considerable part of the trends aloft can be linked to an increase of the atmospheric energy transport into the Arctic.A major topic of this thesis is the linkage between the mid-latitude circulation and the Arctic warming. It is suggested that the atmospheric meridional energy transport is an efficient indicator of this linkage.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)